Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
Sci Rep. 2024 Nov 22;14(1):28976. doi: 10.1038/s41598-024-79817-x.
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
确定结构和功能网络之间的关系对于理解人类大脑的大规模组织至关重要。新兴技术,如功能近红外光谱学,在研究结构-功能关系方面的潜在贡献尚未得到探索。在我们的研究中,我们使用来自 18 个被试的同时脑电图 (EEG) 和功能近红外光谱 (fNIRS) 记录,在静息状态和运动想象任务中,使用源重建的 EEG 和 fNIRS 信号来描述全局和局部结构-功能耦合,因为在任务期间这种关系尚未得到充分探索。我们采用图信号处理的数学框架,研究这种关系如何在电和血液动力学网络以及不同的大脑状态中变化。结果表明,fNIRS 结构-功能耦合在静息时类似于较慢频率的 EEG 耦合,并且在大脑状态和振荡中存在变化。局部上,关系是异构的,感觉皮层的耦合较大,而联合皮层的耦合较小,遵循单模态到跨模态梯度。EEG 和 fNIRS 之间存在差异,特别是在额顶网络中。神经活动的跨频带表示表明,跨模态皮层中电和血液动力学活动之间的对应性较低,无论大脑状态如何,而在运动想象任务中表现出对躯体运动网络的特异性。总的来说,这些发现为使用经济实惠的功能性脑成像时的结构-功能关系和大脑组织提供了一种多模态理解。