基于频谱峰值方法的 EEG 信号评估与基于统计相关的算术任务诱发的心理状态判别。
Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks.
机构信息
Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania.
Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania.
出版信息
Sensors (Basel). 2024 May 22;24(11):3316. doi: 10.3390/s24113316.
Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.
通过解释 EEG 信号来引出大脑活动是一个具有挑战性的问题,需要结合信号分析的综合方法。通过各种分类方法,可以解决由算术任务引起的心理状态分类问题,使用 EEG 信号在时间、频率和统计域中的各种特征参数。本文探讨了一项实验的结果,该实验旨在突出 PhysioNet 数据库中包含的算术心理任务,该实验在 36 名受试者的群体上进行。关于这个主题的大多数出版物都涉及基于机器学习 (ML) 的分类方法,支持监督学习支持向量机 (SVM) 算法、K-最近邻 (KNN)、线性判别分析 (LDA) 和决策树 (DTs)。此外,还有基于 EEG 数据作为时间序列的分析及其与递归神经网络 (RNN) 的分类的常见方法,以及改进算法,如长短期记忆 (LSTM)、双向长短期记忆 (BLSTM) 和门控循环单元 (GRUs)。在本工作中,我们评估了基于 EEG 信号的两个特定特征的域限比较的分类方法:信号对的统计相关性和在 theta、alpha 和 beta 频段检测到的谱峰的大小。这项研究提供了一些关于大脑电活动的解释,巩固和补充了类似研究的结果。所使用的分类方法简单易用。EEG 数据分析表明,theta 和 beta 频段是放松和算术计算状态之间的唯一区分器。值得注意的是,使用谱峰标准的 F7 信号在 theta 和 beta 频段都达到了最佳分类精度(100%),在计算表现最佳的受试者中。此外,我们的研究还发现 Fz 信号在 theta 频段是用于所有受试者的心理任务区分的良好传感器,准确率为 90%。