Suppr超能文献

通过基于聚类的分类方法减少智能家居中活动重叠的类间差异以提高识别率。

Improving Recognition of Overlapping Activities with Less Interclass Variations in Smart Homes through Clustering-Based Classification.

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

College of Computer and Information Sciences, Al Jouf University, Sakakah, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Jun 2;2022:8303856. doi: 10.1155/2022/8303856. eCollection 2022.

Abstract

The systems of sensing technology along with machine learning techniques provide a robust solution in a smart home due to which health monitoring, elderly care, and independent living take advantage. This study addresses the overlapping problem in activities performed by the smart home resident and improves the recognition performance of overlapping activities. The overlapping problem occurs due to less interclass variations (i.e., similar sensors used in more than one activity and the same location of performed activities). The proposed approach overlapping activity recognition using cluster-based classification (OAR-CbC) that makes a generic model for this problem is to use a soft partitioning technique to separate the homogeneous activities from nonhomogeneous activities on a coarse-grained level. Then, the activities within each cluster are balanced and the classifier is trained to correctly recognize the activities within each cluster independently on a fine-grained level. We examine four partitioning and classification techniques with the same hierarchy for a fair comparison. The OAR-CbC evaluates on smart home datasets Aruba and Milan using threefold and leave-one-day-out cross-validation. We used evaluation metrics: precision, recall, score, accuracy, and confusion matrices to ensure the model's reliability. The OAR-CbC shows promising results on both datasets, notably boosting the recognition rate of all overlapping activities more than the state-of-the-art studies.

摘要

基于感知技术和机器学习技术的系统为智能家居提供了强大的解决方案,使得健康监测、老年人护理和独立生活等方面都能受益。本研究解决了智能家居居民执行的活动中的重叠问题,并提高了重叠活动的识别性能。重叠问题是由于类间变化较小(即,多个活动中使用的相似传感器和执行活动的相同位置)引起的。该研究提出了一种使用基于聚类的分类的重叠活动识别方法(OAR-CbC),该方法使用软分区技术在粗粒度级别上将同质活动与非同质活动分开。然后,在每个聚类内平衡活动,并在细粒度级别上独立地训练分类器以正确识别每个聚类内的活动。为了进行公平比较,我们使用相同的层次结构检查了四种分区和分类技术。OAR-CbC 在使用三折和一天留一交叉验证的 Aruba 和 Milan 智能家居数据集上进行评估。我们使用评估指标:精度、召回率、F1 分数、准确性和混淆矩阵来确保模型的可靠性。OAR-CbC 在两个数据集上都显示出了有希望的结果,特别是比最先进的研究方法更有效地提高了所有重叠活动的识别率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f703/9184152/dfe5b6920b82/CIN2022-8303856.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验