Suppr超能文献

自动化智能家居评估支持疼痛管理:多种方法分析。

Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis.

机构信息

College of Nursing, Washington State University, Vancouver, WA, United States.

School of Nursing and Midwifery, Edith Cowan University, Joondalup, Australia.

出版信息

J Med Internet Res. 2020 Nov 6;22(11):e23943. doi: 10.2196/23943.

Abstract

BACKGROUND

Poorly managed pain can lead to substance use disorders, depression, suicide, worsening health, and increased use of health services. Most pain assessments occur in clinical settings away from patients' natural environments. Advances in smart home technology may allow observation of pain in the home setting. Smart homes recognizing human behaviors may be useful for quantifying functional pain interference, thereby creating new ways of assessing pain and supporting people living with pain.

OBJECTIVE

This study aimed to determine if a smart home can detect pain-related behaviors to perform automated assessment and support intervention for persons with chronic pain.

METHODS

A multiple methods, secondary data analysis was conducted using historic ambient sensor data and weekly nursing assessment data from 11 independent older adults reporting pain across 1-2 years of smart home monitoring. A qualitative approach was used to interpret sensor-based data of 27 unique pain events to support clinician-guided training of a machine learning model. A periodogram was used to calculate circadian rhythm strength, and a random forest containing 100 trees was employed to train a machine learning model to recognize pain-related behaviors. The model extracted 550 behavioral markers for each sensor-based data segment. These were treated as both a binary classification problem (event, control) and a regression problem.

RESULTS

We found 13 clinically relevant behaviors, revealing 6 pain-related behavioral qualitative themes. Quantitative results were classified using a clinician-guided random forest technique that yielded a classification accuracy of 0.70, sensitivity of 0.72, specificity of 0.69, area under the receiver operating characteristic curve of 0.756, and area under the precision-recall curve of 0.777 in comparison to using standard anomaly detection techniques without clinician guidance (0.16 accuracy achieved; P<.001). The regression formulation achieved moderate correlation, with r=0.42.

CONCLUSIONS

Findings of this secondary data analysis reveal that a pain-assessing smart home may recognize pain-related behaviors. Utilizing clinicians' real-world knowledge when developing pain-assessing machine learning models improves the model's performance. A larger study focusing on pain-related behaviors is warranted to improve and test model performance.

摘要

背景

疼痛管理不善可能导致物质使用障碍、抑郁、自杀、健康状况恶化和更多地使用医疗服务。大多数疼痛评估都是在远离患者自然环境的临床环境中进行的。智能家居技术的进步可能允许在家中环境中观察疼痛。识别人类行为的智能家居可能有助于量化功能性疼痛干扰,从而创造新的疼痛评估方法并为疼痛患者提供支持。

目的

本研究旨在确定智能家居是否可以检测到与疼痛相关的行为,从而对慢性疼痛患者进行自动评估和支持干预。

方法

采用多方法、二次数据分析方法,使用来自 11 名独立的老年人的历史环境传感器数据和每周护理评估数据,这些老年人在智能家居监测的 1-2 年内报告疼痛。采用定性方法解释基于传感器的 27 个独特疼痛事件的数据,以支持临床医生指导机器学习模型的培训。使用周期图计算昼夜节律强度,并使用包含 100 棵树的随机森林训练机器学习模型以识别与疼痛相关的行为。该模型为每个基于传感器的数据段提取了 550 个行为标记。这些既可以作为二分类问题(事件、对照),也可以作为回归问题进行处理。

结果

我们发现了 13 种具有临床意义的行为,揭示了 6 种与疼痛相关的行为定性主题。使用临床医生指导的随机森林技术对定量结果进行分类,该技术的分类准确率为 0.70、灵敏度为 0.72、特异性为 0.69、接收器操作特征曲线下面积为 0.756,与使用无临床医生指导的标准异常检测技术相比,精度-召回曲线下面积为 0.777(准确率提高 0.16;P<.001)。回归公式达到了中度相关性,r=0.42。

结论

这项二次数据分析的结果表明,疼痛评估智能家居可能识别与疼痛相关的行为。在开发疼痛评估机器学习模型时利用临床医生的实际知识可以提高模型的性能。需要进行更大规模的研究来关注与疼痛相关的行为,以改善和测试模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7679205/98a5d5047811/jmir_v22i11e23943_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验