Suppr超能文献

迈向可解释人工智能赋能的认知健康评估。

Toward explainable AI-empowered cognitive health assessment.

机构信息

Department of Cyber Security, Air University, Islamabad, Pakistan.

Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon.

出版信息

Front Public Health. 2023 Mar 9;11:1024195. doi: 10.3389/fpubh.2023.1024195. eCollection 2023.

Abstract

Explainable artificial intelligence (XAI) is of paramount importance to various domains, including healthcare, fitness, skill assessment, and personal assistants, to understand and explain the decision-making process of the artificial intelligence (AI) model. Smart homes embedded with smart devices and sensors enabled many context-aware applications to recognize physical activities. This study presents , a novel XAI-empowered human activity recognition (HAR) approach based on key features identified from the data collected from sensors located at different places in a smart home. identifies a set of new features (i.e., the total number of sensors used in a specific activity), as based on weighting criteria. Next, it presents (i.e., mean, standard deviation) to handle the outliers and higher class variance. The proposed is evaluated using machine learning models, namely, random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep learning models such as deep neural network (DNN), convolution neural network (CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments demonstrate the superior performance of using RF classifier over all other machine learning and deep learning models. For explainability, uses Local Interpretable Model Agnostic (LIME) with an RF classifier. achieves 0.96% of F-score for health and dementia classification and 0.95 and 0.97% for activity recognition of dementia and healthy individuals, respectively.

摘要

可解释人工智能(XAI)对于医疗保健、健身、技能评估和个人助理等各个领域都非常重要,它可以帮助人们理解和解释人工智能(AI)模型的决策过程。智能家庭中嵌入的智能设备和传感器使许多上下文感知应用程序能够识别身体活动。本研究提出了一种基于从智能家居中不同位置的传感器收集的数据中识别关键特征的新型 XAI 赋能的人类活动识别(HAR)方法。该方法通过加权标准确定了一组新的特征(即特定活动中使用的传感器总数),作为。接下来,它提出了(即均值、标准差)来处理异常值和更高的类方差。所提出的 方法使用机器学习模型(如随机森林(RF)、K-最近邻(KNN)、支持向量机(SVM)、决策树(DT)、朴素贝叶斯(NB)和深度学习模型(如深度神经网络(DNN)、卷积神经网络(CNN)和基于 CNN 的长短时记忆(CNN-LSTM)进行评估。实验表明,在所有其他机器学习和深度学习模型中,RF 分类器使用 可以实现更好的性能。对于可解释性,使用基于 RF 分类器的局部可解释模型不可知(LIME)。在健康和痴呆症分类方面, 达到了 0.96%的 F 分数,而在痴呆症和健康个体的活动识别方面,分别达到了 0.95%和 0.97%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a92/10033697/b60dfd039252/fpubh-11-1024195-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验