Landscape Architecture, Zhejiang Gongshang University, Hangzhou 310000, China.
Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310000, China.
Comput Intell Neurosci. 2022 Jun 2;2022:4253128. doi: 10.1155/2022/4253128. eCollection 2022.
This article presents an in-depth study and analysis of the construction of a convolutional neural network model and multidimensional visualization system of old urban space and proposes the design of a multifaceted visualization reconstruction system of old urban space based on a neural network. It also quantitatively analyzes the essential spatial attribute characteristics of urban shadow areas as nodes of the overall urban dynamic network in three dimensions-spatial connection strength, spatial connection distance, and spatial connection direction-summarizes the characteristics of urban old spatial structure from the perspective of a dynamic network, and then proposes the model of urban old spatial design from the perspective of an active network. The shallow depth of the network structure is used to reduce the parameters in the learning process of reconfigurable convolutional neural networks using data sets so that the model learns more general features. For the situation where the number of data sets is small, data augmentation is used to expand the size of the data sets and improve the recognition accuracy of the reconfigurable convolutional neural network. A real-time update method of multifaceted data visualization for big data scenarios is proposed and implemented to reduce the network load and network latency caused by charts of multidimensional data changes, reduce the data error rate, and maintain the system stability in the old urban space concurrency scenario.
本文深入研究和分析了卷积神经网络模型和多维可视化系统的构建,并提出了基于神经网络的旧城区空间多方面可视化重建系统的设计。它还从动态网络的角度对城市阴影区域作为整体城市动态网络节点的基本空间属性特征进行了定量分析,从主动网络的角度总结了城市旧空间结构的特点,然后从主动网络的角度提出了城市旧空间设计模型。网络结构的浅层深度用于减少可重构卷积神经网络在使用数据集进行学习过程中的参数,以便模型学习更通用的特征。对于数据集数量较少的情况,使用数据增强来扩展数据集的大小并提高可重构卷积神经网络的识别精度。提出并实现了一种大数据场景下多维数据可视化的实时更新方法,以减少因多维数据变化图表引起的网络负载和网络延迟,降低数据错误率,并在旧城区空间并发场景下保持系统稳定性。