Suppr超能文献

雌性限性贝氏拟态蝴蝶模拟超基因的基因组结构和功能单位。

Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic butterflies.

机构信息

Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.

School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210198. doi: 10.1098/rstb.2021.0198. Epub 2022 Jun 13.

Abstract

It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related butterflies, and is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: . has an inversion, but . does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further species suggests three scenarios for the evolution of the mimicry supergene between the two species. The structural features revealed in the mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.

摘要

长期以来,人们一直认为两种密切相关的蝴蝶—— 和 具有雌性二态性限性贝氏拟态,这种拟态由超基因控制。全基因组测序、全基因组关联研究和功能分析最近确定了拟态超基因,包括 基因。尽管这两个物种的超基因都由模仿和非模仿等位基因之间高度分化的区域组成,并且位于相同的染色体位置,但它们在基因组结构上表现出关键差异,特别是是否存在倒位: 具有倒位,但 没有。这篇综述介绍并比较了两个 物种中拟态超基因的详细基因组结构,包括基因组成、重复序列组成、断点/边界结构、染色体倒位和连锁不平衡。超基因内或侧翼的各自基因的表达模式和功能分析表明, 和其他基因参与了拟态特征。此外,对两个 物种之间的拟态超基因相应区域的结构比较表明,拟态超基因在这两个 物种之间的进化存在三种情况。在 拟态超基因中揭示的结构特征为超基因的形成、维持和进化提供了深入了解。本文是主题为“超基因的基因组结构:原因和进化后果”的一部分。

相似文献

1
Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic butterflies.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210198. doi: 10.1098/rstb.2021.0198. Epub 2022 Jun 13.
2
Parallel evolution of Batesian mimicry supergene in two butterflies, and .
Sci Adv. 2018 Apr 18;4(4):eaao5416. doi: 10.1126/sciadv.aao5416. eCollection 2018 Apr.
3
Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac177.
5
Controls Both Hindwing and Abdominal Mimicry Traits in the Female-Limited Batesian Mimicry of .
Front Insect Sci. 2022 Jul 12;2:929518. doi: 10.3389/finsc.2022.929518. eCollection 2022.
6
doublesex is a mimicry supergene.
Nature. 2014 Mar 13;507(7491):229-32. doi: 10.1038/nature13112. Epub 2014 Mar 5.
7
The mimetic wing pattern of butterflies is regulated by a -orchestrated gene network.
Commun Biol. 2019 Jul 10;2:257. doi: 10.1038/s42003-019-0510-7. eCollection 2019.
9
Mimicry diversification in via a genomic inversion in the regulatory region of -.
Proc Biol Sci. 2020 May 13;287(1926):20200443. doi: 10.1098/rspb.2020.0443. Epub 2020 Apr 29.
10
Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion.
Curr Biol. 2018 Jun 4;28(11):1839-1845.e3. doi: 10.1016/j.cub.2018.04.072. Epub 2018 May 24.

引用本文的文献

1
A shared gene but distinct dynamics regulate mimicry polymorphisms in closely related species.
bioRxiv. 2025 Mar 3:2025.03.03.641230. doi: 10.1101/2025.03.03.641230.
2
Incomplete recombination suppression fuels extensive haplotype diversity in a butterfly colour pattern supergene.
PLoS Biol. 2025 Feb 28;23(2):e3003043. doi: 10.1371/journal.pbio.3003043. eCollection 2025 Feb.
3
Chromosomal inversions and their impact on insect evolution.
Curr Opin Insect Sci. 2024 Dec;66:101280. doi: 10.1016/j.cois.2024.101280. Epub 2024 Oct 5.
4
Controls Both Hindwing and Abdominal Mimicry Traits in the Female-Limited Batesian Mimicry of .
Front Insect Sci. 2022 Jul 12;2:929518. doi: 10.3389/finsc.2022.929518. eCollection 2022.
5
Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis.
PLoS Genet. 2023 Oct 4;19(10):e1010990. doi: 10.1371/journal.pgen.1010990. eCollection 2023 Oct.
6
Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac177.
7
Genomic architecture of supergenes: connecting form and function.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210192. doi: 10.1098/rstb.2021.0192. Epub 2022 Jun 13.
8
Stepwise evolution of a butterfly supergene via duplication and inversion.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210207. doi: 10.1098/rstb.2021.0207. Epub 2022 Jun 13.

本文引用的文献

1
Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac177.
2
Evolution of the Insect PPK Gene Family.
Genome Biol Evol. 2021 Sep 1;13(9). doi: 10.1093/gbe/evab185.
3
Sense-overlapping lncRNA as a decoy of translational repressor protein for dimorphic gene expression.
PLoS Genet. 2021 Jul 28;17(7):e1009683. doi: 10.1371/journal.pgen.1009683. eCollection 2021 Jul.
4
Inversion breakpoints and the evolution of supergenes.
Mol Ecol. 2021 Jun;30(12):2738-2755. doi: 10.1111/mec.15907. Epub 2021 Apr 28.
5
The Genomic Architecture and Evolutionary Fates of Supergenes.
Genome Biol Evol. 2021 May 7;13(5). doi: 10.1093/gbe/evab057.
6
Behaviour before beauty: signal weighting during mate selection in the butterfly .
Ethology. 2019 Aug;125(8):565-574. doi: 10.1111/eth.12884. Epub 2019 May 13.
7
Genetic switch in UV response of mimicry-related pale-yellow colors in Batesian mimic butterfly, .
Sci Adv. 2021 Jan 8;7(2). doi: 10.1126/sciadv.abd6475. Print 2021 Jan.
8
Batesian mimicry has evolved with deleterious effects of the pleiotropic gene doublesex.
Sci Rep. 2020 Dec 7;10(1):21333. doi: 10.1038/s41598-020-78055-1.
9
Tissue-specific developmental regulation and isoform usage underlie the role of in sex differentiation and mimicry in swallowtails.
R Soc Open Sci. 2020 Sep 30;7(9):200792. doi: 10.1098/rsos.200792. eCollection 2020 Sep.
10
Mimicry diversification in via a genomic inversion in the regulatory region of -.
Proc Biol Sci. 2020 May 13;287(1926):20200443. doi: 10.1098/rspb.2020.0443. Epub 2020 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验