Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
Adv Sci (Weinh). 2022 Aug;9(23):e2201212. doi: 10.1002/advs.202201212. Epub 2022 Jun 13.
Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aβ+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aβ- and 90 Aβ+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aβ-, 5 Aβ+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.
最近的多组学分析为全面了解病理过程铺平了道路。然而,尽管这些患者可能存在生物学亚型,但只有少数研究探索了阿尔茨海默病(AD)。在这项研究中,使用 Multi-Omics Factor Analysis+(MOFA+)对四个数据集(遗传学、miRNA 转录组学、蛋白质组学和基于血液的生物标志物)进行无监督分类,并进行各种下游分析的系统生物学方法。在 170 名具有脑淀粉样蛋白病理(Aβ+)的患者中揭示了新的亚组,并基于构建全(M-TPAD)和免疫聚焦模型(M-IPAD)的多组学因素的顶级靶标,确定了它们的特征。作者探索了亚型的特征和 AD 发病机制的可能关键驱动因素。进一步的深入研究表明,这些亚型与纵向大脑变化有关,自噬途径是主要贡献者。自噬或聚类趋势的意义在 120 名外周血单核细胞(PBMC;包括 30 名 Aβ-和 90 名 Aβ+)、诱导多能干细胞衍生的人脑类器官/小胶质细胞(n = 12,包括 5 名 Aβ-、5 名 Aβ+和 CRISPR-Cas9 载脂蛋白同基因系)和人类大脑转录组(n = 78)中得到验证。总之,这项研究为 AD 的精准医学治疗和药物开发提供了一种基于整合多组学分析和网络建模的策略。