Suppr超能文献

用于等离子体多激发和热点的工程化石墨烯晶界

Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots.

作者信息

Ma Teng, Yao Baicheng, Zheng Zebo, Liu Zhibo, Ma Wei, Chen Maolin, Chen Huanjun, Deng Shaozhi, Xu Ningsheng, Bao Qiaoliang, Sun Dong-Ming, Cheng Hui-Ming, Ren Wencai

机构信息

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.

Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.

出版信息

ACS Nano. 2022 Jun 28;16(6):9041-9048. doi: 10.1021/acsnano.2c00396. Epub 2022 Jun 13.

Abstract

Surface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-the-art optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics. Here, we report the heteroepitaxial growth of a polycrystalline graphene monolayer with patterned gradient grain boundary density, which is synthesized by creating diverse nanosized local growth environments on a centimeter-scale substrate with a polycrystalline graphene ring seed in chemical vapor deposition. Such geometry enables plasmonic co-excitation with varied wavelength diversification in the nanoscale. using high-resolution scanning near-field optical microscopy, we demonstrate rich plasmon standing waves, even bright plasmonic hotspots with a size up to 3 μm. Moreover, by changing the grain boundary density and annealing, we find the local plasmonic wavelengths are widely tunable, from 70 to 300 nm. Theoretical modeling supports that such plasmonic versatility is due to the grain boundary-induced plasmon-phonon interactions through random phase approximation. The seed-induced heteroepitaxial growth provides a promising way for the grain boundary engineering of two-dimensional materials, and the controllable grain boundary-based plasmon co-generation and manipulation in one single graphene monolayer will facilitate the applications of graphene for plasmonics and nanophotonics.

摘要

表面等离子体激元在纳米尺度上融合了光子学和电子学,一直是集成信息学、精密检测、高分辨率成像和能量转换的基石。由于具有卓越的费米 - 狄拉克可调性、超快载流子迁移率和高场限制,石墨烯为等离子体技术提供了优异的优势,并实现了从紧场增强光源、调制器、光电探测器到生化传感器等各种先进的光电子应用。然而,在单个石墨烯片上高密度地共同激发多个石墨烯等离子体激元具有挑战性,这是迈向等离子体波分复用和下一代动态光电子学的关键一步。在此,我们报道了具有图案化梯度晶界密度的多晶石墨烯单层的异质外延生长,它是通过在化学气相沉积中使用多晶石墨烯环种子在厘米级衬底上创建不同的纳米级局部生长环境而合成的。这种几何结构能够在纳米尺度上实现具有不同波长多样性的等离子体激元共同激发。使用高分辨率扫描近场光学显微镜,我们展示了丰富的等离子体激元驻波,甚至发现了尺寸高达3μm的明亮等离子体激元热点。此外,通过改变晶界密度和退火,我们发现局部等离子体激元波长可在70至300nm范围内广泛调谐。理论建模支持这种等离子体激元的多功能性是由于通过随机相位近似的晶界诱导等离子体激元 - 声子相互作用。种子诱导的异质外延生长为二维材料的晶界工程提供了一种有前途的方法,并且在单个石墨烯单层中基于可控晶界的等离子体激元共同产生和操纵将促进石墨烯在等离子体学和纳米光子学中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验