Suppr超能文献

基于混合锚点驱动有序分类的超快速深层车道检测

Ultra Fast Deep Lane Detection With Hybrid Anchor Driven Ordinal Classification.

作者信息

Qin Zequn, Zhang Pengyi, Li Xi

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):2555-2568. doi: 10.1109/TPAMI.2022.3182097. Epub 2024 Apr 3.

Abstract

Modern methods mainly regard lane detection as a problem of pixel-wise segmentation, which is struggling to address the problems of efficiency and challenging scenarios like severe occlusions and extreme lighting conditions. Inspired by human perception, the recognition of lanes under severe occlusions and extreme lighting conditions is mainly based on contextual and global information. Motivated by this observation, we propose a novel, simple, yet effective formulation aiming at ultra fast speed and the problem of challenging scenarios. Specifically, we treat the process of lane detection as an anchor-driven ordinal classification problem using global features. First, we represent lanes with sparse coordinates on a series of hybrid (row and column) anchors. With the help of the anchor-driven representation, we then reformulate the lane detection task as an ordinal classification problem to get the coordinates of lanes. Our method could significantly reduce the computational cost with the anchor-driven representation. Using the large receptive field property of the ordinal classification formulation, we could also handle challenging scenarios. Extensive experiments on four lane detection datasets show that our method could achieve state-of-the-art performance in terms of both speed and accuracy. A lightweight version could even achieve 300+ frames per second(FPS). Our code is at https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2.

摘要

现代方法主要将车道检测视为一个逐像素分割问题,这种方法在解决效率问题以及诸如严重遮挡和极端光照条件等具有挑战性的场景方面存在困难。受人类感知的启发,在严重遮挡和极端光照条件下对车道的识别主要基于上下文和全局信息。基于这一观察结果,我们提出了一种新颖、简单但有效的方法,旨在实现超高速并解决具有挑战性的场景问题。具体而言,我们将车道检测过程视为一个使用全局特征的基于锚点的有序分类问题。首先,我们在一系列混合(行和列)锚点上用稀疏坐标表示车道。借助基于锚点的表示,我们将车道检测任务重新表述为一个有序分类问题以获取车道的坐标。我们的方法通过基于锚点的表示可以显著降低计算成本。利用有序分类公式的大感受野特性,我们还可以处理具有挑战性的场景。在四个车道检测数据集上进行的大量实验表明,我们的方法在速度和准确性方面都可以达到当前的最佳性能。一个轻量级版本甚至可以达到每秒300多帧(FPS)。我们的代码位于https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验