Suppr超能文献

基于实例分割的车道线检测算法研究。

Research on Lane Line Detection Algorithm Based on Instance Segmentation.

机构信息

School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China.

Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241000, China.

出版信息

Sensors (Basel). 2023 Jan 10;23(2):789. doi: 10.3390/s23020789.

Abstract

Aiming at the current lane line detection algorithm in complex traffic scenes, such as lane lines being blocked by shadows, blurred roads, and road sparseness, which lead to low lane line detection accuracy and poor real-time detection speed, this paper proposes a lane line detection algorithm based on instance segmentation. Firstly, the improved lightweight network RepVgg-A0 is used to encode road images, which expands the receptive field of the network; secondly, a multi-size asymmetric shuffling convolution model is proposed for the characteristics of sparse and slender lane lines, which enhances the ability to extract lane line features; an adaptive upsampling model is further proposed as a decoder, which upsamples the feature map to the original resolution for pixel-level classification and detection, and adds the lane line prediction branch to output the confidence of the lane line; and finally, the instance segmentation-based lane line detection algorithm is successfully deployed on the embedded platform Jetson Nano, and half-precision acceleration is performed using NVDIA's TensorRT framework. The experimental results show that the Acc value of the lane line detection algorithm based on instance segmentation is 96.7%, and the FPS is 77.5 fps/s. The detection speed deployed on the embedded platform Jetson Nano reaches 27 fps/s.

摘要

针对复杂交通场景中的车道线检测算法,如车道线被阴影、模糊道路和道路稀疏遮挡,导致车道线检测精度低、实时检测速度慢的问题,提出了一种基于实例分割的车道线检测算法。首先,使用改进的轻量化网络 RepVgg-A0 对道路图像进行编码,扩大了网络的感受野;其次,针对稀疏细长的车道线特点,提出了多尺寸非对称乱序卷积模型,增强了提取车道线特征的能力;进一步提出了自适应上采样模型作为解码器,将特征图上采样到原始分辨率进行像素级分类和检测,并添加了车道线预测分支输出车道线的置信度;最后,成功将基于实例分割的车道线检测算法部署到嵌入式平台 Jetson Nano 上,并使用 NVIDIA 的 TensorRT 框架进行半精度加速。实验结果表明,基于实例分割的车道线检测算法的 Acc 值为 96.7%,帧率为 77.5 fps/s。在嵌入式平台 Jetson Nano 上部署的检测速度达到 27 fps/s。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac5/9866380/ec173e66037c/sensors-23-00789-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验