Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
Sci Rep. 2022 Jun 13;12(1):9731. doi: 10.1038/s41598-022-13571-w.
The molluscs Lucinoma capensis, Lembulus bicuspidatus and Nassarius vinctus are highly abundant in Namibian oxygen minimum zone sediments. To understand which nutritional strategies allow them to reach such impressive abundances in this extreme habitat we investigated their trophic diversity, including a chemosymbiosis in L. capensis, focussing on nitrogen biochemical pathways of the symbionts. We combined results of bulk nitrogen and carbon (δC and δN) and of compound-specific isotope analyses of amino acid nitrogen (AAs-δN and δN), with 16S rRNA gene sequencing of L. capensis tissues and also with exploratory results of ammonium, nitrate and nitrite turnover. The trophic position (TP) of the bivalve L. capensis is placed between autotrophy and mixotrophy, consistent with its proposed symbiosis with sulfur-oxidizing Candidatus Thiodiazotropha sp. symbionts. The symbionts are here revealed to perform nitrate reduction and ammonium uptake, with clear indications of ammonium host-symbionts recycling, but surprisingly unable to fix nitrogen. The TP of the bivalve L. bicuspidatus is placed in between mixotrophy and herbivory. The TP of the gastropod N. vinctus reflected omnivory. Multiple lines of evidences in combination with current ecosystem knowledge point to sedimented diatoms as important components of L. bicuspidatus and N. vinctus' diet, likely supplemented at times with chemoautotrophic bacteria. This study highlights the importance of benthic-pelagic coupling that fosters the dietary base for macrozoobenthos in the OMZ. It further unveils that, in contrast to all shallow water lucinid symbionts, deeper water lucinid symbionts rely on ammonium assimilation rather than dinitrogen fixation to obtain nitrogen for growth.
南非开普软甲石鳖、双齿厚唇贝和旋扭滨螺在纳米比亚的低氧区沉积物中丰度极高。为了了解这些生物在这种极端生境中为何能达到如此高的丰度,我们研究了它们的营养多样性,包括南非开普软甲石鳖中的共生关系,并重点研究了共生体的氮生化途径。我们结合了氮和碳(δC 和 δN)的总体分析以及氨基酸氮(AAs-δN 和 δN)的化合物特异性同位素分析的结果,对南非开普软甲石鳖的组织进行了 16S rRNA 基因测序,并对铵盐、硝酸盐和亚硝酸盐的周转进行了探索性研究。双壳类软体动物南非开普软甲石鳖的营养位(TP)处于自养和混养之间,与其与硫氧化的 Candidatus Thiodiazotropha sp. 共生体的共生关系一致。共生体被发现进行硝酸盐还原和铵盐吸收,并有明显的铵盐宿主-共生体再循环迹象,但令人惊讶的是它们不能固氮。双壳类软体动物双齿厚唇贝的营养位(TP)处于混养和草食性之间。腹足纲动物旋扭滨螺的营养位(TP)反映了杂食性。多种证据与当前的生态系统知识相结合,表明沉积的硅藻是双齿厚唇贝和旋扭滨螺饮食的重要组成部分,可能偶尔还会补充化能自养细菌。本研究强调了底栖-浮游耦合的重要性,这种耦合促进了 OMZ 中大型底栖动物的饮食基础。它进一步揭示了,与所有浅海水胆石共生体不同,更深水的水胆石共生体依赖于氨同化而不是固氮来获取生长所需的氮。