Suppr超能文献

血流动力学-结构相互作用(FSI)模拟研究动脉粥样硬化对血流动力学、动脉组织重构和颅内动脉瘤破裂风险的影响。

Fluid-structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms.

机构信息

Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.

School of Engineering, Deakin University, Geelong, 3216, Australia.

出版信息

Biomech Model Mechanobiol. 2022 Oct;21(5):1393-1406. doi: 10.1007/s10237-022-01597-y. Epub 2022 Jun 13.

Abstract

The biomechanical and hemodynamic effects of atherosclerosis on the initiation of intracranial aneurysms (IA) are not yet clearly discovered. Also, studies for the observation of hemodynamic variation due to atherosclerotic stenosis and its impact on arterial remodeling and aneurysm genesis remain a controversial field of vascular engineering. The majority of studies performed are relevant to computational fluid dynamic (CFD) simulations. CFD studies are limited in consideration of blood and arterial tissue interactions. In this work, the interaction of the blood and vessel tissue because of atherosclerotic occlusions is studied by developing a fluid and structure interaction (FSI) analysis for the first time. The FSI presents a semi-realistic simulation environment to observe how the blood and vessels' structural interactions can increase the accuracy of the biomechanical study results. In the first step, many different intracranial vessels are modeled for an investigation of the biomechanical and hemodynamic effects of atherosclerosis in arterial tissue remodeling. Three physiological conditions of an intact artery, the artery with intracranial atherosclerosis (ICAS), and an atherosclerotic aneurysm (ACA) are employed in the models with required assumptions. Finally, the obtained outputs are studied with comparative and statistical analyses according to the intact model in a normal physiological condition. The results show that existing occlusions in the cross-sectional area of the arteries play a determinative role in changing the hemodynamic behavior of the arterial segments. The undesirable variations in blood velocity and pressure throughout the vessels increase the risk of arterial tissue remodeling and aneurysm formation.

摘要

动脉粥样硬化对颅内动脉瘤(IA)发生的生物力学和血液动力学影响尚不清楚。此外,由于动脉粥样硬化狭窄及其对动脉重塑和动脉瘤发生的影响而观察血液动力学变化的研究仍然是血管工程学的一个有争议的领域。大多数进行的研究都与计算流体动力学(CFD)模拟有关。CFD 研究在考虑血液和动脉组织相互作用方面存在局限性。在这项工作中,通过首次开发流固耦合(FSI)分析来研究由于动脉粥样硬化闭塞而导致的血液和血管组织之间的相互作用。FSI 提供了一个半现实的模拟环境,以观察血液和血管结构相互作用如何提高生物力学研究结果的准确性。在第一步中,对许多不同的颅内血管进行建模,以研究动脉组织重塑过程中动脉粥样硬化的生物力学和血液动力学影响。在模型中采用了三种生理状态,即完整动脉、颅内动脉粥样硬化(ICAS)和动脉粥样硬化性动脉瘤(ACA),并进行了必要的假设。最后,根据正常生理条件下的完整模型进行比较和统计分析来研究获得的输出。结果表明,动脉横截面积中现有的闭塞对动脉节段血液动力学行为的改变起着决定性的作用。血管中血液速度和压力的不良变化会增加动脉组织重塑和动脉瘤形成的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e3c/9626433/ab1f8e11c4de/10237_2022_1597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验