文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的肿瘤病理学的全球研究趋势和重点:一项科学计量学研究。

Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

机构信息

Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

Graduate School of Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China.

出版信息

J Transl Med. 2022 Sep 6;20(1):409. doi: 10.1186/s12967-022-03615-0.


DOI:10.1186/s12967-022-03615-0
PMID:36068536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9450455/
Abstract

BACKGROUND: With the development of digital pathology and the renewal of deep learning algorithm, artificial intelligence (AI) is widely applied in tumor pathology. Previous researches have demonstrated that AI-based tumor pathology may help to solve the challenges faced by traditional pathology. This technology has attracted the attention of scholars in many fields and a large amount of articles have been published. This study mainly summarizes the knowledge structure of AI-based tumor pathology through bibliometric analysis, and discusses the potential research trends and foci. METHODS: Publications related to AI-based tumor pathology from 1999 to 2021 were selected from Web of Science Core Collection. VOSviewer and Citespace were mainly used to perform and visualize co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references and keywords in this field. RESULTS: A total of 2753 papers were included. The papers on AI-based tumor pathology research had been continuously increased since 1999. The United States made the largest contribution in this field, in terms of publications (1138, 41.34%), H-index (85) and total citations (35,539 times). We identified the most productive institution and author were Harvard Medical School and Madabhushi Anant, while Jemal Ahmedin was the most co-cited author. Scientific Reports was the most prominent journal and after analysis, Lecture Notes in Computer Science was the journal with highest total link strength. According to the result of references and keywords analysis, "breast cancer histopathology" "convolutional neural network" and "histopathological image" were identified as the major future research foci. CONCLUSIONS: AI-based tumor pathology is in the stage of vigorous development and has a bright prospect. International transboundary cooperation among countries and institutions should be strengthened in the future. It is foreseeable that more research foci will be lied in the interpretability of deep learning-based model and the development of multi-modal fusion model.

摘要

背景:随着数字病理学的发展和深度学习算法的更新,人工智能(AI)广泛应用于肿瘤病理学。先前的研究表明,基于 AI 的肿瘤病理学可能有助于解决传统病理学面临的挑战。这项技术引起了许多领域学者的关注,发表了大量文章。本研究主要通过文献计量分析总结基于 AI 的肿瘤病理学的知识结构,并探讨潜在的研究趋势和重点。

方法:从 Web of Science 核心合集选取 1999 年至 2021 年与基于 AI 的肿瘤病理学相关的文献。主要使用 VOSviewer 和 Citespace 对该领域的国家、机构、作者、参考文献和关键词的合著、共引和共现分析进行分析和可视化。

结果:共纳入 2753 篇论文。自 1999 年以来,基于 AI 的肿瘤病理学研究论文持续增加。美国在该领域的发文量(1138 篇,占 41.34%)、H 指数(85)和总被引频次(35539 次)最大。确定最具生产力的机构和作者分别是哈佛医学院和 Madabhushi Anant,而被引频次最高的作者是 Jemal Ahmedin。《Scientific Reports》是最突出的期刊,经过分析,《Lecture Notes in Computer Science》是总链接强度最高的期刊。根据参考文献和关键词分析的结果,“乳腺癌组织病理学”“卷积神经网络”和“组织病理学图像”被确定为未来的主要研究重点。

结论:基于 AI 的肿瘤病理学正处于蓬勃发展阶段,前景光明。未来应加强国家和机构之间的国际跨界合作。可以预见,更多的研究重点将在于基于深度学习模型的可解释性和多模态融合模型的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/5bae4e5fb8e5/12967_2022_3615_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/0d77d77b0820/12967_2022_3615_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/52f949fc6097/12967_2022_3615_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/c945c930f78f/12967_2022_3615_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/415f4b5fcc51/12967_2022_3615_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/77644f6d25fc/12967_2022_3615_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/07b6d9391c5e/12967_2022_3615_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/26722116ed17/12967_2022_3615_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/5bae4e5fb8e5/12967_2022_3615_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/0d77d77b0820/12967_2022_3615_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/52f949fc6097/12967_2022_3615_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/c945c930f78f/12967_2022_3615_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/415f4b5fcc51/12967_2022_3615_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/77644f6d25fc/12967_2022_3615_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/07b6d9391c5e/12967_2022_3615_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/26722116ed17/12967_2022_3615_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da88/9450455/5bae4e5fb8e5/12967_2022_3615_Fig8_HTML.jpg

相似文献

[1]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[4]
Hotspots and frontiers in PSMA research for prostate cancer: a bibliometric and visualization analysis over the past 20 years.

Eur J Med Res. 2023-12-19

[5]
Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis.

Int J Environ Res Public Health. 2022-9-15

[6]
Worldwide research landscape of artificial intelligence in lung disease: A scientometric study.

Heliyon. 2024-5-13

[7]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[8]
Current status and trends of artificial intelligence research on the four traditional Chinese medicine diagnostic methods: a scientometric study.

Ann Transl Med. 2023-2-15

[9]
Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.

J Nurs Scholarsh. 2023-7

[10]
Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis.

Front Oncol. 2023-10-13

引用本文的文献

[1]
A national survey on the integration of traditional Chinese medicine and artificial intelligence: attitudes and perceptions from the individuals with health needs.

Integr Med Res. 2025-12

[2]
Mapping the evolving trend of research on efferocytosis: a comprehensive data-mining-based study.

BioData Min. 2025-8-25

[3]
Global trends of big data analytics in health research: a bibliometric study.

Front Med (Lausanne). 2025-7-1

[4]
Global research landscape on artificial intelligence in echocardiography from 1997 to 2024: Bibliometric analysis.

Digit Health. 2025-6-30

[5]
Global trends in the use of artificial intelligence for urological tumor histopathology: A 20-year bibliometric analysis.

Digit Health. 2025-6-4

[6]
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.

Quant Imaging Med Surg. 2025-5-1

[7]
Research hotspots and trends of acupoint and pain based on PubMed: a bibliometric analysis.

Front Neurol. 2025-1-17

[8]
IDH-mutant glioma risk stratification via whole slide images: Identifying pathological feature associations.

iScience. 2024-12-16

[9]
Nanoparticle trends and hotspots in lung cancer diagnosis from 2006-2023: a bibliometric analysis.

Front Oncol. 2024-12-20

[10]
Trends of mapping knowledge structure and themes of cancer sonodynamic therapy: a text-mining study.

Quant Imaging Med Surg. 2024-12-5

本文引用的文献

[1]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

[2]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[3]
Multiomics Analysis of Structural Magnetic Resonance Imaging of the Brain and Cerebrospinal Fluid Metabolomics in Cognitively Normal and Impaired Adults.

Front Aging Neurosci. 2022-1-25

[4]
Multimodal deep learning for biomedical data fusion: a review.

Brief Bioinform. 2022-3-10

[5]
Establishment of a Prognostic Prediction and Drug Selection Model for Patients with Clear Cell Renal Cell Carcinoma by Multiomics Data Analysis.

Oxid Med Cell Longev. 2022

[6]
Multiomics subtyping for clinically prognostic cancer subtypes and personalized therapy: A systematic review and meta-analysis.

Genet Med. 2022-1

[7]
Applying artificial intelligence for cancer immunotherapy.

Acta Pharm Sin B. 2021-11

[8]
Mapping Knowledge Structure and Themes Trends of Osteoporosis in Rheumatoid Arthritis: A Bibliometric Analysis.

Front Med (Lausanne). 2021-11-23

[9]
Digital pathology and artificial intelligence in translational medicine and clinical practice.

Mod Pathol. 2022-1

[10]
A Bibliometric Analysis of Pyroptosis From 2001 to 2021.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索