文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在风湿性疾病中的应用:文献计量分析。

Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

机构信息

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No. 99 Longcheng Street, Taiyuan, 030032, China.

Shanxi Academy of Advanced Research and Innovation (SAARI), No.7, Xinhua Road, Xiaodian District, Taiyuan, Shanxi, China.

出版信息

Clin Exp Med. 2024 Aug 23;24(1):196. doi: 10.1007/s10238-024-01453-6.


DOI:10.1007/s10238-024-01453-6
PMID:39174664
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11341591/
Abstract

The utilization of artificial intelligence (AI) in rheumatic diseases has enhanced the diagnostic accuracy of rheumatic diseases, enabled the prediction of patient outcomes, expanded treatment options, and facilitated the provision of individualized medical solutions. The research in this field has been progressively growing in recent years. Consequently, there is a need for bibliometric analysis to elucidate the current state of advancement and predominant research foci in AI applications within rheumatic diseases. Additionally, it is crucial to identify key contributors and their interrelations in this field. This study aimed to conduct a bibliometric analysis to investigate the current research hotspots and collaborative networks in the application of AI in rheumatic disease in recent years. A comprehensive search was conducted in Web of Science for articles on artificial intelligence in rheumatic diseases, published in SSCI and SCI-EXPANDED until January 1, 2024. Utilizing software tools like VOSviewers and CiteSpace, we analyzed various parameters including publication year, journal, country, institution, and authorship. This analysis extended to examining cited authors, generating reference and citation network graphs, and creating co-citation network and keyword maps. Additionally, research hotspots and trends in this domain were evaluated. As of January 1, 2024, a total of 3508 articles have been published on the application of artificial intelligence (AI) in rheumatic disease, exhibiting a steady rise in both the annual publication frequency and rate. "Scientific Reports" emerged as the leading journal in terms of relevant publications. The United States stood out as the predominant country in terms of the volume of published papers, with the University of California, San Francisco (UCSF) being the most prolific and frequently cited institution. Among authors, Young Ho Lee and Valentina Pedoia were noted for their significant contributions, with Pedoia achieving the highest average citation count per publication. Machine learning emerged as a prominent and central keyword. The trend indicates a growing interest in AI research within rheumatologic diseases, with its role expected to become increasingly pivotal in the field. This study presents a comprehensive summary of research trends and developments in the application of artificial intelligence (AI) in rheumatic diseases. It offers insights into potential collaborations and prospects for future research, clarifying the research frontiers and emerging directions in recent years. The findings of this study serve as a valuable reference for scholars studying rheumatology and immunology.

摘要

人工智能(AI)在风湿性疾病中的应用提高了风湿性疾病的诊断准确性,使患者预后的预测成为可能,扩大了治疗选择,并促进了个体化医疗解决方案的提供。近年来,该领域的研究一直在不断发展。因此,需要进行文献计量分析,以阐明当前 AI 在风湿性疾病应用中的进展状况和主要研究重点。此外,确定该领域的关键贡献者及其相互关系至关重要。本研究旨在进行文献计量分析,以调查近年来 AI 在风湿性疾病应用中的当前研究热点和协作网络。在 Web of Science 中对 SSCI 和 SCI-EXPANDED 收录的关于风湿性疾病人工智能的文章进行了全面检索,检索时间截至 2024 年 1 月 1 日。利用 VOSviewer 和 CiteSpace 等软件工具,我们分析了出版年份、期刊、国家、机构和作者等各种参数。这项分析还扩展到了对被引作者、生成参考文献和引文网络图谱、创建共引网络和关键词图谱的分析。此外,还评估了该领域的研究热点和趋势。截至 2024 年 1 月 1 日,共发表了 3508 篇关于人工智能(AI)在风湿性疾病中应用的文章,其年度发表频率和比率均呈稳步上升趋势。《Scientific Reports》是相关出版物的主要期刊。就发表论文的数量而言,美国是主要国家,加利福尼亚大学旧金山分校(UCSF)是最具影响力和被引用频率最高的机构。在作者中,Young Ho Lee 和 Valentina Pedoia 因其显著贡献而受到关注,Pedia 发表的论文平均被引次数最高。机器学习是一个突出的和中心的关键词。这一趋势表明,人们对风湿性疾病的 AI 研究越来越感兴趣,预计其在该领域的作用将变得越来越重要。本研究全面总结了人工智能(AI)在风湿性疾病应用中的研究趋势和发展。它提供了对潜在合作关系和未来研究前景的洞察,阐明了近年来的研究前沿和新兴方向。本研究结果为研究风湿病学和免疫学的学者提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/5b9a0cf81c0e/10238_2024_1453_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/d1eb9d7720fb/10238_2024_1453_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/c75c13532855/10238_2024_1453_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/9b93edbc68af/10238_2024_1453_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/fd5d33d656db/10238_2024_1453_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/47413145ce8c/10238_2024_1453_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/5b9a0cf81c0e/10238_2024_1453_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/d1eb9d7720fb/10238_2024_1453_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/c75c13532855/10238_2024_1453_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/9b93edbc68af/10238_2024_1453_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/fd5d33d656db/10238_2024_1453_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/47413145ce8c/10238_2024_1453_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3921/11341591/5b9a0cf81c0e/10238_2024_1453_Fig6_HTML.jpg

相似文献

[1]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[4]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

[5]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[6]
Medical Education and Artificial Intelligence: Web of Science-Based Bibliometric Analysis (2013-2022).

JMIR Med Educ. 2024-10-10

[7]
Evolutionary patterns and research frontiers of artificial intelligence in age-related macular degeneration: a bibliometric analysis.

Quant Imaging Med Surg. 2025-1-2

[8]
Cardiotoxicity induced by chemotherapy and immunotherapy in cancer treatment: a bibliometric analysis.

Discov Oncol. 2025-3-23

[9]
Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Syst Rev. 2025-3-15

[10]
Identifying and Visualizing Global Research Trends and Hotspots of Artificial Intelligence in Medical Ultrasound: A Bibliometric Analysis.

Curr Med Imaging. 2024

引用本文的文献

[1]
Adoption and perception of LLM-based chatbots in health care: an exploratory cross-sectional survey of individuals with rheumatic diseases.

Rheumatol Adv Pract. 2025-7-12

[2]
Emerging Artificial Intelligence Innovations in Rheumatoid Arthritis and Challenges to Clinical Adoption.

Curr Rheumatol Rep. 2025-6-28

[3]
The digital transformation and future era: bibliometric view of artificial intelligence application in pediatric surgery.

Front Pediatr. 2025-6-12

[4]
Evaluating the readability, quality, and reliability of responses generated by ChatGPT, Gemini, and Perplexity on the most commonly asked questions about Ankylosing spondylitis.

PLoS One. 2025-6-18

[5]
Trends in nanomedicine for colorectal cancer treatment: Bibliometric and visualization analysis (2010-2024).

World J Gastrointest Oncol. 2025-4-15

[6]
Cardiotoxicity induced by chemotherapy and immunotherapy in cancer treatment: a bibliometric analysis.

Discov Oncol. 2025-3-23

[7]
The Future of Giant Cell Arteritis Diagnosis and Management: A Systematic Review of Artificial Intelligence and Predictive Analytics.

Cureus. 2024-12-5

本文引用的文献

[1]
Artificial intelligence and laboratory data in rheumatic diseases.

Clin Chim Acta. 2023-6-1

[2]
Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint.

Arthritis Res Ther. 2022-12-12

[3]
Autoimmune pre-disease.

Autoimmun Rev. 2023-2

[4]
Application of Machine Learning in Rheumatic Immune Diseases.

J Healthc Eng. 2022

[5]
An introduction to machine learning and analysis of its use in rheumatic diseases.

Nat Rev Rheumatol. 2021-12

[6]
Why remission is not enough: underlying disease mechanisms in RA that prevent cure.

Nat Rev Rheumatol. 2021-3

[7]
Challenges in the clinical diagnosis of psoriatic arthritis.

Clin Immunol. 2020-3-18

[8]
Machine learning in rheumatology approaches the clinic.

Nat Rev Rheumatol. 2020-2

[9]
The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus.

J Autoimmun. 2020-6

[10]
Do we need a new classification of juvenile idiopathic arthritis?

Clin Immunol. 2020-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索