Ranapurwala Shabbar I, Miller Vanessa E, Carey Timothy S, Gaynes Bradley N, Keil Alexander P, Fitch Catherine Vinita, Swilley-Martinez Monica E, Kavee Andrew L, Cooper Toska, Dorris Samantha, Goldston David B, Peiper Lewis J, Pence Brian W
Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Injury Prevention Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.
Inj Prev. 2022 Jun 14. doi: 10.1136/injuryprev-2022-044609.
Suicide deaths have been increasing for the past 20 years in the USA resulting in 45 979 deaths in 2020, a 29% increase since 1999. Lack of data linkage between entities with potential to implement large suicide prevention initiatives (health insurers, health institutions and corrections) is a barrier to developing an integrated framework for suicide prevention.
Data linkage between death records and several large administrative datasets to (1) estimate associations between risk factors and suicide outcomes, (2) develop predictive algorithms and (3) establish long-term data linkage workflow to ensure ongoing suicide surveillance.
We will combine six data sources from North Carolina, the 10th most populous state in the USA, from 2006 onward, including death certificate records, violent deaths reporting system, large private health insurance claims data, Medicaid claims data, University of North Carolina electronic health records and data on justice involved individuals released from incarceration. We will determine the incidence of death from suicide, suicide attempts and ideation in the four subpopulations to establish benchmarks. We will use a nested case-control design with incidence density-matched population-based controls to (1) identify short-term and long-term risk factors associated with suicide attempts and mortality and (2) develop machine learning-based predictive algorithms to identify individuals at risk of suicide deaths.
We will address gaps from prior studies by establishing an in-depth linked suicide surveillance system integrating multiple large, comprehensive databases that permit establishment of benchmarks, identification of predictors, evaluation of prevention efforts and establishment of long-term surveillance workflow protocols.
在过去20年中,美国的自杀死亡人数一直在增加,2020年达到45979人,自1999年以来增加了29%。缺乏有潜力实施大型自杀预防举措的实体(健康保险公司、医疗机构和惩教机构)之间的数据关联,是制定综合自杀预防框架的一个障碍。
将死亡记录与几个大型行政数据集进行数据关联,以(1)估计风险因素与自杀结果之间的关联,(2)开发预测算法,以及(3)建立长期数据关联工作流程以确保持续的自杀监测。
我们将合并来自美国人口第十多的北卡罗来纳州自2006年起的六个数据源,包括死亡证明记录、暴力死亡报告系统、大型私人健康保险理赔数据、医疗补助理赔数据、北卡罗来纳大学电子健康记录以及从监禁中释放的涉案人员数据。我们将确定这四个亚人群中自杀死亡、自杀未遂和自杀意念的发生率,以建立基准。我们将采用巢式病例对照设计,与基于发病率密度匹配的人群对照一起,以(1)识别与自杀未遂和死亡率相关的短期和长期风险因素,以及(2)开发基于机器学习的预测算法,以识别有自杀死亡风险的个体。
我们将通过建立一个深入的关联自杀监测系统来弥补先前研究的不足,该系统整合了多个大型、全面的数据库,允许建立基准、识别预测因素、评估预防措施以及建立长期监测工作流程协议。