Suppr超能文献

学习相关可塑性的树突分隔。

Dendritic Compartmentalization of Learning-Related Plasticity.

机构信息

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia

CNC Program, Stanford University, Stanford, CA 94305.

出版信息

eNeuro. 2022 Jun 23;9(3). doi: 10.1523/ENEURO.0060-22.2022. Print 2022 May-Jun.

Abstract

The dendrites of cortical pyramidal neurons receive synaptic inputs from different pathways that are organized according to their laminar target. This architectural scheme provides cortical neurons with a spatial mechanism to separate information, which may support neural flexibility required during learning. Here, we investigated layer-specific plasticity of sensory encoding following learning by recording from two different dendritic compartments, tuft and basal dendrites, of layer 2/3 (L2/3) pyramidal neurons in the auditory cortex of mice. Following auditory fear conditioning, auditory-evoked Ca responses were enhanced in tuft, but not basal, dendrites leading to increased somatic action potential output. This is in direct contrast to the long held (and debated) hypothesis that, despite extensive dendritic arbors, neurons function as a simple one-compartment model. Two computational models of varying complexity based on the experimental data illustrated that this learning-related increase of auditory responses in tuft dendrites can account for the changes in somatic output. Taken together, we illustrate that neurons do not function as a single compartment, and dendritic compartmentalization of learning-related plasticity may act to increase the computational power of pyramidal neurons.

摘要

大脑皮层锥体神经元的树突接收来自不同通路的突触输入,这些通路根据其层状靶标进行组织。这种架构方案为皮层神经元提供了一种空间机制来分离信息,这可能支持学习过程中所需的神经灵活性。在这里,我们通过记录听觉皮层中 2/3 层(L2/3)锥体神经元的两个不同树突隔室——树突丛和基底树突,来研究学习后感觉编码的特定层可塑性。在听觉恐惧条件反射后,树突丛中的听觉诱发 Ca 反应增强,但基底树突没有,导致体细胞动作电位输出增加。这与长期以来(且有争议)的假设直接矛盾,即尽管存在广泛的树突分支,但神经元作为一个简单的单室模型发挥作用。基于实验数据的两个具有不同复杂性的计算模型表明,树突丛中听觉反应的这种与学习相关的增加可以解释体细胞输出的变化。总的来说,我们表明神经元不作为一个单一的隔室发挥作用,而与学习相关的可塑性的树突隔室分可能会增加锥体神经元的计算能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff43/9233502/907485b4927f/ENEURO.0060-22.2022_f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验