Suppr超能文献

掺钕高熵玻璃系统中相干宽带辐射过程的设计

Design of coherent wideband radiation process in a Nd-doped high entropy glass system.

作者信息

Zhang Linde, Zhang Jingyuan, Wang Xiang, Tao Meng, Dai Gangtao, Wu Jing, Miao Zhangwang, Han Shifei, Yu Haijuan, Lin Xuechun

机构信息

Laboratory of All-solid-state Light Sources, Beijing Engineering Research Center, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China.

Synlumin Conuninex (Shanghai) Enterprise Development Co., Ltd., 201401 Shanghai, China.

出版信息

Light Sci Appl. 2022 Jun 14;11(1):181. doi: 10.1038/s41377-022-00848-y.

Abstract

We discover that the spatially coherent radiation within a certain frequency range can be obtained without a common nonlinear optical process. Conventionally, the emission spectra were obtained by de-exciting excited centers from real excited energy levels to the ground state. Our findings are achieved by deploying a high-entropy glass system (HEGS) doped with neodymium ions. The HEGS exhibits a much broader infrared absorption than common glass systems, which can be attributed to be high-frequency optical branch phonons or allowable multi-phonon processes caused by phonon broadening in the system. A broadened phonon-assisted wideband radiation (BPAWR) is induced if the pump laser is absorbed by the system. The subsequent low-threshold self-absorption coherence modulation (SACM) can be controlled by changing excitation wavelengths, sample size, and doping concentrations. The SACM can be red-shifted through the emission of phonons of the excited species and be blue-shifted by absorbing phonons before they are de-excited. There is a time delay up to 1.66 ns between the pump pulse and the BPAWR when measured after traveling through a 35 mm long sample, which is much longer than the Raman process. The BPAWR-SACM can amplify the centered non-absorption band with a gain up to 26.02 dB. These results reveal that the shift of the novel radiation is determined by the frequency of the non-absorption band near the absorption region, and therefore the emission shifts can be modulated by changing the absorption spectrum. When used in fiber lasers, the BPAWR-SACM process may help to achieve tunability.

摘要

我们发现,无需常见的非线性光学过程就能获得特定频率范围内的空间相干辐射。传统上,发射光谱是通过将激发中心从实际激发能级去激发到基态而获得的。我们的发现是通过部署一种掺杂钕离子的高熵玻璃系统(HEGS)实现的。与普通玻璃系统相比,HEGS表现出更宽的红外吸收,这可归因于高频光学支声子或由系统中的声子展宽引起的允许的多声子过程。如果泵浦激光被该系统吸收,就会诱导出展宽的声子辅助宽带辐射(BPAWR)。随后的低阈值自吸收相干调制(SACM)可以通过改变激发波长、样品尺寸和掺杂浓度来控制。SACM可以通过激发物种的声子发射而发生红移,并在声子去激发之前通过吸收声子而发生蓝移。当在一个35毫米长的样品中传播后进行测量时,泵浦脉冲与BPAWR之间存在高达1.66纳秒的时间延迟,这比拉曼过程长得多。BPAWR - SACM可以将中心非吸收带放大,增益高达26.02分贝。这些结果表明,新型辐射的频移由吸收区域附近非吸收带的频率决定,因此发射频移可以通过改变吸收光谱来调制。当用于光纤激光器时,BPAWR - SACM过程可能有助于实现可调谐性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576d/9197846/d0809e905f60/41377_2022_848_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验