Suppr超能文献

通过光激发缺陷对ZnO表面进行超短和亚稳态掺杂。

Ultrashort and metastable doping of the ZnO surface by photoexcited defects.

作者信息

Gierster Lukas, Vempati Sesha, Stähler Julia

机构信息

Humbolt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany.

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abt. Physikalische Chemie, Faradayweg 4-6, 14195 Berlin, Germany.

出版信息

Faraday Discuss. 2022 Sep 15;237(0):58-79. doi: 10.1039/d2fd00036a.

Abstract

Shallow donors in semiconductors are known to form impurity bands that induce metallic conduction at sufficient doping densities. The perhaps most direct analogy to such doping in optically excited semiconductors is the photoexcitation of deep electronic defects or dopant levels, creating defect excitons (DX) which may act like shallow donors. In this work, we use time- and angle-resolved photoelectron spectroscopy to observe and characterize DX at the surface of ZnO. The DX are created on a femtosecond timescale upon photoexcitation and have a spatial extent of few nanometers that is confined to the ZnO surface. The localized electronic levels lie at 150 meV below the Fermi energy, very similar to the shallow donor states induced by hydrogen doping [Deinert , , 2015, , 235313]. The transient dopants exhibit a multi-step decay ranging from hundreds of picoseconds to 77 μs and even longer. By enhancing the DX density, a Mott transition occurs, enabling the ultrafast metallization of the ZnO surface, which we have described previously [Gierster , , 2021, , 978]. Depending on the defect density, the duration of the photoinduced metallization ranges from picoseconds to μs and longer, corresponding to the decay dynamics of the DX. The metastable lifetime of the DX is consistent with the observation of persistent photoconductivity (PPC) in ZnO reported in the literature [Madel , , 2017, , 124301]. In agreement with the theory on PPC [Lany and Zunger, , 2005, , 035215], the deep defects are attributed to oxygen vacancies due to their energetic position in the band gap and their formation by surface photolysis upon UV illumination. We show that the photoexcitation of these defects is analogous to chemical doping and enables the transient control of material properties, such as the electrical conductivity, from ultrafast to metastable timescales. The same mechanism should be at play in other semiconductor compounds with deep defects.

摘要

已知半导体中的浅施主会形成杂质带,在足够的掺杂密度下会诱导金属导电。在光激发半导体中,与这种掺杂最直接的类比可能是深电子缺陷或掺杂剂能级的光激发,产生缺陷激子(DX),其作用可能类似于浅施主。在这项工作中,我们使用时间分辨和角分辨光电子能谱来观察和表征ZnO表面的DX。DX在光激发后的飞秒时间尺度上产生,空间范围为几纳米,局限于ZnO表面。局域电子能级位于费米能级以下150 meV处,与氢掺杂诱导的浅施主态非常相似[Deinert, , 2015, , 235313]。瞬态掺杂剂表现出从数百皮秒到77微秒甚至更长时间的多步衰减。通过提高DX密度,会发生莫特转变,使ZnO表面实现超快金属化,这一点我们之前已经描述过[Gierster, , 2021, , 978]。根据缺陷密度的不同,光致金属化的持续时间从皮秒到微秒甚至更长,这与DX的衰减动力学相对应。DX的亚稳态寿命与文献中报道的ZnO中持久光电导(PPC)的观测结果一致[Madel, , 2017, , 124301]。与PPC理论[Lany和Zunger, , 2005, , 035215]一致,由于深缺陷在带隙中的能量位置以及它们在紫外光照下通过表面光解形成,所以深缺陷归因于氧空位。我们表明,这些缺陷的光激发类似于化学掺杂,并且能够在从超快到亚稳态的时间尺度上对材料特性(如电导率)进行瞬态控制。相同的机制应该在其他具有深缺陷的半导体化合物中也起作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验