Gierster L, Vempati S, Stähler J
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abt. Physikalische Chemie, Berlin, Germany.
Humbolt-Universität zu Berlin, Institut für Chemie, Berlin, Germany.
Nat Commun. 2021 Feb 12;12(1):978. doi: 10.1038/s41467-021-21203-6.
Band bending at semiconductor surfaces induced by chemical doping or electric fields can create metallic surfaces with properties not found in the bulk, such as high electron mobility, magnetism or superconductivity. Optical generation of such metallic surfaces on ultrafast timescales would be appealing for high-speed electronics. Here, we demonstrate the ultrafast generation of a metal at the (10-10) surface of ZnO upon photoexcitation. Compared to hitherto known ultrafast photoinduced semiconductor-to-metal transitions that occur in the bulk of inorganic semiconductors, the metallization of the ZnO surface is launched by 3-4 orders of magnitude lower photon fluxes. Using time- and angle-resolved photoelectron spectroscopy, we show that the phase transition is caused by photoinduced downward surface band bending due to photodepletion of donor-type deep surface defects. The discovered mechanism is in analogy to chemical doping of semiconductor surfaces and presents a general route for controlling surface-confined metallicity on ultrafast timescales.
由化学掺杂或电场引起的半导体表面能带弯曲可产生具有体材料中所没有的特性的金属表面,如高电子迁移率、磁性或超导性。在超快时间尺度上通过光学生成此类金属表面对高速电子学具有吸引力。在此,我们展示了在光激发下ZnO的(10-10)表面超快生成金属的过程。与迄今已知的发生在无机半导体体材料中的超快光致半导体-金属转变相比,ZnO表面的金属化是由低3-4个数量级的光子通量引发的。利用时间分辨和角分辨光电子能谱,我们表明该相变是由施主型深表面缺陷的光耗尽导致的光致表面能带向下弯曲引起的。所发现的机制类似于半导体表面的化学掺杂,并为在超快时间尺度上控制表面受限金属性提供了一条通用途径。