Gierster Lukas, Turkina Olga, Deinert Jan-Christoph, Vempati Sesha, Baeta Elsie, Garmshausen Yves, Hecht Stefan, Draxl Claudia, Stähler Julia
Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
Adv Sci (Weinh). 2024 Aug;11(31):e2403765. doi: 10.1002/advs.202403765. Epub 2024 Jun 14.
Organic/inorganic hybrid systems offer great potential for novel solar cell design combining the tunability of organic chromophore absorption properties with high charge carrier mobilities of inorganic semiconductors. However, often such material combinations do not show the expected performance: while ZnO, for example, basically exhibits all necessary properties for a successful application in light-harvesting, it was clearly outpaced by TiO in terms of charge separation efficiency. The origin of this deficiency has long been debated. This study employs femtosecond time-resolved photoelectron spectroscopy and many-body ab initio calculations to identify and quantify all elementary steps leading to the suppression of charge separation at an exemplary organic/ZnO interface. It is demonstrated that charge separation indeed occurs efficiently on ultrafast (350 fs) timescales, but that electrons are recaptured at the interface on a 100 ps timescale and subsequently trapped in a strongly bound (0.7 eV) hybrid exciton state with a lifetime exceeding 5 µs. Thus, initially successful charge separation is followed by delayed electron capture at the interface, leading to apparently low charge separation efficiencies. This finding provides a sufficiently large time frame for counter-measures in device design to successfully implement specifically ZnO and, moreover, invites material scientists to revisit charge separation in various kinds of previously discarded hybrid systems.
有机/无机混合体系为新型太阳能电池设计提供了巨大潜力,它将有机发色团吸收特性的可调性与无机半导体的高电荷载流子迁移率结合在一起。然而,这类材料组合往往并未展现出预期的性能:例如,尽管氧化锌基本上具备在光捕获方面成功应用所需的所有特性,但在电荷分离效率方面,它明显落后于二氧化钛。这种不足的根源长期以来一直存在争议。本研究采用飞秒时间分辨光电子能谱和多体从头算来识别和量化在一个典型的有机/氧化锌界面上导致电荷分离受抑制的所有基本步骤。结果表明,电荷分离确实能在超快(350飞秒)时间尺度上高效发生,但电子会在100皮秒时间尺度上在界面处被重新捕获,随后被困在一个强束缚(0.7电子伏特)的混合激子态中,其寿命超过5微秒。因此,最初成功的电荷分离之后是界面处延迟的电子捕获,导致明显较低的电荷分离效率。这一发现为器件设计中的应对措施提供了足够大的时间框架,以便成功地具体应用氧化锌,此外,还促使材料科学家重新审视各种先前被摒弃的混合体系中的电荷分离情况。