Suppr超能文献

建立胶体相互作用模型,预测平衡和非平衡状态。

Modeling colloidal interactions that predict equilibrium and non-equilibrium states.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA.

出版信息

J Chem Phys. 2022 Jun 14;156(22):224101. doi: 10.1063/5.0086650.

Abstract

Modulating the interaction potential between colloids suspended in a fluid can trigger equilibrium phase transitions as well as the formation of non-equilibrium "arrested states," such as gels and glasses. Faithful representation of such interactions is essential for using simulation to interrogate the microscopic details of non-equilibrium behavior and for extrapolating observations to new regions of phase space that are difficult to explore in experiments. Although the extended law of corresponding states predicts equilibrium phases for systems with short-ranged interactions, it proves inadequate for equilibrium predictions of systems with longer-ranged interactions and for predicting non-equilibrium phenomena in systems with either short- or long-ranged interactions. These shortcomings highlight the need for new approaches to represent and disambiguate interaction potentials that replicate both equilibrium and non-equilibrium phase behavior. In this work, we use experiments and simulations to study a system with long-ranged thermoresponsive colloidal interactions and explore whether a resolution to this challenge can be found in regions of the phase diagram where temporal effects influence material state. We demonstrate that the conditions for non-equilibrium arrest by colloidal gelation are sensitive to both the shape of the interaction potential and the thermal quench rate. We exploit this sensitivity to propose a kinetics-based algorithm to extract distinct arrest conditions for candidate potentials that accurately selects between potentials that differ in shape but share the same predicted equilibrium structure. The algorithm selects the candidate that best matches the non-equilibrium behavior between simulation and experiments. Because non-equilibrium behavior in simulation is encoded entirely by the interparticle potential, the results are agnostic to the particular mechanism(s) by which arrest occurs, and so we expect our method to apply to a range of arrested states, including gels and glasses. Beyond its utility in constructing models, the method reveals that each potential has a quantitatively distinct arrest line, providing insight into how the shape of longer-ranged potentials influences the conditions for colloidal gelation.

摘要

调节悬浮在流体中的胶体之间的相互作用势能可以引发平衡相转变以及非平衡“停滞状态”的形成,例如凝胶和玻璃。忠实于这些相互作用的表示对于使用模拟来探究非平衡行为的微观细节以及将观察结果外推到实验难以探索的新相空间区域是至关重要的。尽管扩展的对应状态定律预测了具有短程相互作用的系统的平衡相,但它对于具有长程相互作用的系统的平衡预测以及对于预测具有短程或长程相互作用的系统中的非平衡现象是不够的。这些缺点突出表明需要新的方法来表示和消除相互作用势能,以复制平衡和非平衡的相行为。在这项工作中,我们使用实验和模拟研究了具有长程热响应胶体相互作用的系统,并探讨了在影响材料状态的时间效应存在的相图区域是否可以找到解决这一挑战的方法。我们证明了胶体凝胶化的非平衡停滞条件对相互作用势能的形状和热淬火速率都很敏感。我们利用这种敏感性提出了一种基于动力学的算法,以提取候选势能的不同停滞条件,该算法可以准确地在形状不同但具有相同预测平衡结构的势能之间进行选择。该算法选择与模拟和实验之间的非平衡行为最匹配的候选者。由于模拟中的非平衡行为完全由粒子间势能编码,因此结果与导致停滞的特定机制无关,因此我们期望我们的方法适用于一系列停滞状态,包括凝胶和玻璃。除了在构建模型中的实用性之外,该方法还揭示了每个势能都有一个定量不同的停滞线,这提供了对长程势能形状如何影响胶体凝胶化条件的深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验