Hou Dong, Xu Zhengrui, Yang Zhijie, Kuai Chunguang, Du Zhijia, Sun Cheng-Jun, Ren Yang, Liu Jue, Xiao Xianghui, Lin Feng
Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA.
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Nat Commun. 2022 Jun 15;13(1):3437. doi: 10.1038/s41467-022-30935-y.
One of the most challenging aspects of developing high-energy lithium-based batteries is the structural and (electro)chemical stability of Ni-rich active cathode materials at thermally-abused and prolonged cell cycling conditions. Here, we report in situ physicochemical characterizations to improve the fundamental understanding of the degradation mechanism of charged polycrystalline Ni-rich cathodes at elevated temperatures (e.g., ≥ 40 °C). Using multiple microscopy, scattering, thermal, and electrochemical probes, we decouple the major contributors for the thermal instability from intertwined factors. Our research work demonstrates that the grain microstructures play an essential role in the thermal stability of polycrystalline lithium-based positive battery electrodes. We also show that the oxygen release, a crucial process during battery thermal runaway, can be regulated by engineering grain arrangements. Furthermore, the grain arrangements can also modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered oxide cathode materials.
开发高能锂基电池最具挑战性的方面之一是富镍活性阴极材料在热滥用和长时间电池循环条件下的结构和(电)化学稳定性。在此,我们报告原位物理化学表征,以增进对高温(例如,≥40°C)下带电多晶富镍阴极降解机制的基本理解。通过使用多种显微镜、散射、热学和电化学探针,我们从相互交织的因素中分离出导致热不稳定的主要因素。我们的研究工作表明,晶粒微观结构在多晶锂基正极电池电极的热稳定性中起着至关重要的作用。我们还表明,氧气释放是电池热失控期间的一个关键过程,可以通过设计晶粒排列来调节。此外,晶粒排列还可以调节层状氧化物阴极材料中的宏观晶体转变模式和氧扩散长度。