Suppr超能文献

经验贝叶斯氢氘交换质谱功能模型。

Empirical Bayes functional models for hydrogen deuterium exchange mass spectrometry.

机构信息

Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.

Structural and Biophysical Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK.

出版信息

Commun Biol. 2022 Jun 15;5(1):588. doi: 10.1038/s42003-022-03517-3.

Abstract

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a technique to explore differential protein structure by examining the rate of deuterium incorporation for specific peptides. This rate will be altered upon structural perturbation and detecting significant changes to this rate requires a statistical test. To determine rates of incorporation, HDX-MS measurements are frequently made over a time course. However, current statistical testing procedures ignore the correlations in the temporal dimension of the data. Using tools from functional data analysis, we develop a testing procedure that explicitly incorporates a model of hydrogen deuterium exchange. To further improve statistical power, we develop an empirical Bayes version of our method, allowing us to borrow information across peptides and stabilise variance estimates for low sample sizes. Our approach has increased power, reduces false positives and improves interpretation over linear model-based approaches. Due to the improved flexibility of our method, we can apply it to a multi-antibody epitope-mapping experiment where current approaches are inapplicable due insufficient flexibility. Hence, our approach allows HDX-MS to be applied in more experimental scenarios and reduces the burden on experimentalists to produce excessive replicates. Our approach is implemented in the R-package "hdxstats": https://github.com/ococrook/hdxstats .

摘要

氢氘交换质谱(HDX-MS)是一种通过检测特定肽段的氘掺入率来探索蛋白质结构差异的技术。该速率在结构扰动时会发生变化,检测到这种速率的显著变化需要进行统计检验。为了确定掺入率,通常需要在一段时间内进行 HDX-MS 测量。然而,目前的统计检验程序忽略了数据时间维度上的相关性。我们使用功能数据分析工具,开发了一种明确纳入氢氘交换模型的检验程序。为了进一步提高统计功效,我们开发了一种经验贝叶斯版本的方法,允许我们在肽之间借用信息,并稳定小样本量的方差估计。与基于线性模型的方法相比,我们的方法提高了功效,减少了假阳性,并改善了解释。由于我们的方法具有更高的灵活性,我们可以将其应用于多抗体表位作图实验,而目前的方法由于缺乏灵活性而无法应用。因此,我们的方法使得 HDX-MS 可以应用于更多的实验场景,并减轻了实验人员产生过多重复实验的负担。我们的方法在 R 包“hdxstats”中实现:https://github.com/ococrook/hdxstats。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e18/9200815/222de5182c3d/42003_2022_3517_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验