Suppr超能文献

人工智能用于诊断癌前病变和浅表食管鳞状细胞癌的微血管:一项多中心研究。

Artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: a multicenter study.

作者信息

Yuan Xiang-Lei, Liu Wei, Liu Yan, Zeng Xian-Hui, Mou Yi, Wu Chun-Cheng, Ye Lian-Song, Zhang Yu-Hang, He Long, Feng Jing, Zhang Wan-Hong, Wang Jun, Chen Xin, Hu Yan-Xing, Zhang Kai-Hua, Hu Bing

机构信息

Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wu Hou District, Chengdu, 610041, China.

School of Automation, Nanjing University of Information Science and Technology, Nanjing, China.

出版信息

Surg Endosc. 2022 Nov;36(11):8651-8662. doi: 10.1007/s00464-022-09353-0. Epub 2022 Jun 15.

Abstract

BACKGROUND

Intrapapillary capillary loop (IPCL) is an important factor for predicting invasion depth of esophageal squamous cell carcinoma (ESCC). The invasion depth is closely related to the selection of treatment strategy. However, diagnosis of IPCLs is complicated and subject to interobserver variability. This study aimed to develop an artificial intelligence (AI) system to predict IPCLs subtypes of precancerous lesions and superficial ESCC.

METHODS

Images of magnifying endoscopy with narrow band imaging from three hospitals were collected retrospectively. IPCLs subtypes were annotated on images by expert endoscopists according to Japanese Endoscopic Society classification. The performance of the AI system was evaluated using internal and external validation datasets (IVD and EVD) and compared with that of the 11 endoscopists.

RESULTS

A total of 7094 images from 685 patients were used to train and validate the AI system. The combined accuracy of the AI system for diagnosing IPCLs subtypes in IVD and EVD was 91.3% and 89.8%, respectively. The AI system achieved better performance than endoscopists in predicting IPCLs subtypes and invasion depth. The ability of junior endoscopists to diagnose IPCLs subtypes (combined accuracy: 84.7% vs 78.2%, P < 0.0001) and invasion depth (combined accuracy: 74.4% vs 67.9%, P < 0.0001) were significantly improved with AI system assistance. Although there was no significant differences, the performance of senior endoscopists was slightly elevated.

CONCLUSIONS

The proposed AI system could improve the diagnostic ability of endoscopists to predict IPCLs classification of precancerous lesions and superficial ESCC.

摘要

背景

乳头内毛细血管袢(IPCL)是预测食管鳞状细胞癌(ESCC)浸润深度的重要因素。浸润深度与治疗策略的选择密切相关。然而,IPCL的诊断复杂,且存在观察者间差异。本研究旨在开发一种人工智能(AI)系统,以预测癌前病变和浅表ESCC的IPCL亚型。

方法

回顾性收集来自三家医院的窄带成像放大内镜图像。由内镜专家根据日本内镜学会分类对图像上的IPCL亚型进行标注。使用内部和外部验证数据集(IVD和EVD)评估AI系统的性能,并与11位内镜医师的性能进行比较。

结果

共使用来自685例患者的7094张图像训练和验证AI系统。AI系统在IVD和EVD中诊断IPCL亚型的综合准确率分别为91.3%和89.8%。在预测IPCL亚型和浸润深度方面,AI系统的表现优于内镜医师。在AI系统的辅助下,初级内镜医师诊断IPCL亚型的能力(综合准确率:84.7%对78.2%,P < 0.0001)和浸润深度的能力(综合准确率:74.4%对67.9%,P < 0.0001)显著提高。虽然没有显著差异,但高级内镜医师的表现略有提升。

结论

所提出的AI系统可提高内镜医师预测癌前病变和浅表ESCC的IPCL分类的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e3/9613556/f773affcf256/464_2022_9353_Fig1_HTML.jpg

相似文献

9
10
The intrapapillary capillary loop (IPCL) changes in superficial esophageal lesions.
Dis Esophagus. 2017 Jan 1;30(1):1-5. doi: 10.1111/dote.12476.

引用本文的文献

1
Artificial intelligence-aided optical biopsy improves the diagnosis of esophageal squamous neoplasm.
World J Gastroenterol. 2025 Apr 7;31(13):104370. doi: 10.3748/wjg.v31.i13.104370.
3
Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions.
Chin Med J (Engl). 2025 Jun 20;138(12):1387-1398. doi: 10.1097/CM9.0000000000003490. Epub 2025 Feb 26.
4
Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era.
World J Gastroenterol. 2024 Oct 21;30(39):4267-4280. doi: 10.3748/wjg.v30.i39.4267.
5
A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system.
Med Biol Eng Comput. 2025 Feb;63(2):293-320. doi: 10.1007/s11517-024-03203-y. Epub 2024 Sep 30.
6
Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancer.
Thorac Cancer. 2024 Jun;15(16):1296-1304. doi: 10.1111/1759-7714.15261. Epub 2024 Apr 29.
7
Novel milestones for early esophageal carcinoma: From bench to bed.
World J Gastrointest Oncol. 2024 Apr 15;16(4):1104-1118. doi: 10.4251/wjgo.v16.i4.1104.
8
Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia.
Diagnostics (Basel). 2024 Jan 30;14(3):301. doi: 10.3390/diagnostics14030301.
9
Exploring the challenge of early gastric cancer diagnostic AI system face in multiple centers and its potential solutions.
J Gastroenterol. 2023 Oct;58(10):978-989. doi: 10.1007/s00535-023-02025-3. Epub 2023 Jul 29.

本文引用的文献

2
A prospective multicenter study of the magnifying endoscopic evaluation of the invasion depth of superficial esophageal cancers.
Surg Endosc. 2022 May;36(5):3451-3459. doi: 10.1007/s00464-021-08666-w. Epub 2021 Jul 28.
3
Use of a convolutional neural network for classifying microvessels of superficial esophageal squamous cell carcinomas.
J Gastroenterol Hepatol. 2021 Aug;36(8):2239-2246. doi: 10.1111/jgh.15479. Epub 2021 Mar 10.
5
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
6
Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence.
J Gastroenterol. 2020 Nov;55(11):1037-1045. doi: 10.1007/s00535-020-01716-5. Epub 2020 Aug 10.
8
Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.
Gastroenterology. 2020 Jun;158(8):2169-2179.e8. doi: 10.1053/j.gastro.2020.02.036. Epub 2020 Feb 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验