School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
Med Biol Eng Comput. 2023 Jul;61(7):1631-1648. doi: 10.1007/s11517-023-02777-3. Epub 2023 Feb 25.
Esophageal squamous cell carcinoma (ESCC) is one of the most common histological types of esophageal cancers. It can seriously affect public health, particularly in Eastern Asia. Early diagnosis and effective therapy of ESCC can significantly help improve patient prognoses. The visualization of intrapapillary capillary loops (IPCLs) under magnification endoscopy (ME) can greatly support the identification of ESCC occurrences by endoscopists. This paper proposes an artificial-intelligence-assisted endoscopic diagnosis approach using deep learning for localizing and identifying IPCLs to diagnose early-stage ESCC. An improved Faster region-based convolutional network (R-CNN) with a polarized self-attention (PSA)-HRNetV2p backbone was employed to automatically detect IPCLs in ME images. In our study, 2887 ME with blue laser imaging (ME-BLI) images of 246 patients and 493 ME with narrow-band imaging (ME-NBI) images of 81 patients were collected from multiple hospitals and used to train and test our detection model. The ME-NBI images were used as the external testing set to verify the generalizability of the model. The experimental evaluation revealed that the proposed method achieved a recall of 79.25%, precision of 75.54%, F1-score of 0.764 and mean average precision (mAP) of 74.95%. Our method outperformed other existing approaches in our evaluation. It can effectively improve the accuracy of ESCC detection and provide a useful adjunct to the assessment of early-stage ESCC for endoscopists.
食管鳞状细胞癌(ESCC)是最常见的食管癌组织学类型之一。它严重影响公众健康,特别是在东亚地区。早期诊断和有效治疗 ESCC 可以显著改善患者预后。放大内镜(ME)下观察到的黏膜内毛细血管袢(IPCLs)可以极大地帮助内镜医生识别 ESCC 的发生。本文提出了一种基于深度学习的人工智能辅助内镜诊断方法,用于定位和识别 IPCLs 以诊断早期 ESCC。采用改进的 Faster 区域卷积神经网络(R-CNN)与极化自注意力(PSA)-HRNetV2p 骨干网络相结合,自动检测 ME 图像中的 IPCLs。我们的研究共收集了来自多家医院的 246 例患者的 2887 张蓝激光成像 ME(ME-BLI)图像和 81 例患者的 493 张窄带成像 ME(ME-NBI)图像,用于训练和测试我们的检测模型。ME-NBI 图像被用作外部测试集,以验证模型的泛化能力。实验评估表明,所提出的方法在召回率、精度、F1 分数和平均准确率(mAP)方面分别达到了 79.25%、75.54%、0.764 和 74.95%。与其他现有的方法相比,我们的方法在评估中表现更好。它可以有效地提高 ESCC 检测的准确性,并为内镜医生评估早期 ESCC 提供有用的辅助手段。