Feinberg School of Medicine, Northwestern University, Chicago, USA.
Institute of Ethics, Dublin City University, Dublin, Ireland.
Sci Eng Ethics. 2022 Jun 15;28(3):29. doi: 10.1007/s11948-022-00380-7.
This paper analyzes the ethics of social science research (SSR) employing big data. We begin by highlighting the research gap found on the intersection between big data ethics, SSR and research ethics. We then discuss three aspects of big data SSR which make it warrant special attention from a research ethics angle: (1) the interpretative character of both SSR and big data, (2) complexities of anticipating and managing risks in publication and reuse of big data SSR, and (3) the paucity of regulatory oversight and ethical recommendations on protecting individual subjects as well as societies when conducting big data SSR. Against this backdrop, we propose using David Resnik's research ethics framework to analyze some of the most pressing ethical issues of big data SSR. Focusing on the principles of honesty, carefulness, openness, efficiency, respect for subjects, and social responsibility, we discuss three clusters of ethical issues: those related to methodological biases and personal prejudices, those connected to risks arising from data availability and reuse, and those leading to individual and social harms. Finally, we advance considerations to observe in developing future ethical guidelines about big data SSR.
本文分析了利用大数据进行社会科学研究(SSR)的伦理问题。我们首先强调了在大数据伦理、SSR 和研究伦理的交叉点上发现的研究差距。然后,我们讨论了大数据 SSR 的三个方面,这些方面使得从研究伦理的角度特别需要关注:(1)SSR 和大数据的解释性特征,(2)预测和管理大数据 SSR 出版和再利用风险的复杂性,以及(3)在进行大数据 SSR 时,对保护个人主体和社会的监管监督和伦理建议的缺乏。在此背景下,我们提议使用 David Resnik 的研究伦理框架来分析大数据 SSR 中一些最紧迫的伦理问题。我们重点关注诚实、谨慎、开放、效率、尊重主体和社会责任等原则,讨论了三个伦理问题群:与方法偏差和个人偏见有关的问题、与数据可用性和再利用产生的风险有关的问题以及导致个人和社会伤害的问题。最后,我们提出了在制定关于大数据 SSR 的未来伦理准则时需要考虑的因素。