Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany.
Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany.
BMC Biol. 2022 Jun 15;20(1):141. doi: 10.1186/s12915-022-01343-x.
DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs).
We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19 and 23 lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19 and rather increased in exon 23 lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23 iHPCs in a syngeneic competitive differentiation assay.
Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23 iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.
DNA 甲基化参与发育过程中基因表达的表观遗传调控,主要由 DNA 甲基转移酶 3A(DNMT3A)和 3B(DNMT3B)建立。DNMT3A 是克隆性造血和白血病中突变最频繁的基因之一,表明它在造血分化中起着至关重要的作用。然而,Dnmt3a 对于造血分化和血液恶性肿瘤的功能相关性主要在小鼠中进行了分析,而人类造血的具体作用仍不清楚。在这项研究中,我们因此研究了 DNMT3A 是否对人类诱导多能干细胞(iPSC)的造血分化至关重要。
我们生成了敲除外显子 2、19 或 23 的 iPSC 系,并分析了不同 DNMT3A 外显子敲除对间充质和造血谱系定向分化的影响。外显子 19 和 23 系在间充质和造血分化过程中几乎完全没有新的 DNA 甲基化。然而,在外显子 19 系中分化效率略有降低,而在外显子 23 系中则略有增加,而对造血祖细胞(iHPC)中的基因表达没有显著影响。值得注意的是,DNMT3A iHPC 可重现具有 DNMT3A 突变的急性髓系白血病(AML)的一些 DNA 甲基化模式。此外,多色遗传条形码显示,在同种异体竞争分化试验中,exon23 iHPC 具有生长优势。
我们的研究结果表明,具有 DNMT3A 不同外显子纯合缺失的 iPSC 仍然能够进行间充质和造血分化,并且 exon23 iHPC 甚至获得了生长优势,尽管几乎完全丧失了新的 DNA 甲基化。我们的 DNMT3A 敲除 iHPC 部分重现了具有 DNMT3A 突变的 AML 的 DNA 甲基化模式,表明我们的模型系统有助于阐明克隆性造血的机制。