From the Departments of Chemistry and Biochemistry and.
Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510 and.
J Biol Chem. 2019 Mar 29;294(13):4898-4910. doi: 10.1074/jbc.RA118.006795. Epub 2019 Jan 31.
Eukaryotic DNA methylation prevents genomic instability by regulating the expression of oncogenes and tumor-suppressor genes. The negative effects of dysregulated DNA methylation are highlighted by a strong correlation between mutations in the DNA methyltransferase gene α () and poor prognoses among acute myeloid leukemia (AML) patients. We show here that clinically observed mutations dramatically alter enzymatic activity, including mutations that lead to 6-fold hypermethylation and 3-fold hypomethylation of the human ( or ) gene promoter. Our results provide insights into the clinically observed heterogeneity of methylation in AML. Cytogenetically normal AML (CN-AML) constitutes 40-50% of all AML cases and is the most epigenetically diverse AML subtype with pronounced changes in non-CpG DNA methylation. We identified a subset of DNMT3A mutations that enhance the enzyme's ability to perform non-CpG methylation by 2-8-fold. Many of these mutations mapped to DNMT3A regions known to interact with proteins that themselves contribute to AML, such as thymine DNA glycosylase (TDG). Using functional mapping of TDG-DNMT3A interactions, we provide evidence that TDG and DNMT3-like (DNMT3L) bind distinct regions of DNMT3A. Furthermore, DNMT3A mutations caused diverse changes in the ability of TDG and DNMT3L to affect DNMT3A function. Cell-based studies of one of these DNMT3A mutations (S714C) replicated the enzymatic studies and revealed that it causes dramatic losses of genome-wide methylation. In summary, mutations in DNMT3A lead to diverse levels of activity, interactions with epigenetic machinery components and cellular changes.
真核生物 DNA 甲基化通过调控致癌基因和肿瘤抑制基因的表达来防止基因组不稳定。DNA 甲基转移酶基因 α () 突变与急性髓系白血病 (AML) 患者预后不良之间存在强烈相关性,这突出了 DNA 甲基化失调的负面影响。我们在此表明,临床观察到的突变显著改变了酶活性,包括导致人类 (或) 基因启动子甲基化增加 6 倍和减少 3 倍的突变。我们的研究结果为 AML 中观察到的 甲基化异质性提供了深入了解。核型正常的 AML(CN-AML)占所有 AML 病例的 40-50%,是最具表观遗传多样性的 AML 亚型,非 CpG DNA 甲基化变化明显。我们鉴定出一组 DNMT3A 突变,可使酶的非 CpG 甲基化能力增强 2-8 倍。这些突变中的许多突变映射到与自身有助于 AML 的蛋白质相互作用的 DNMT3A 区域,例如胸腺嘧啶 DNA 糖基化酶 (TDG)。通过对 TDG-DNMT3A 相互作用的功能作图,我们提供了证据表明 TDG 和 DNMT3 样(DNMT3L)结合 DNMT3A 的不同区域。此外,DNMT3A 突变导致 TDG 和 DNMT3L 对影响 DNMT3A 功能的能力产生不同的变化。对其中一个 DNMT3A 突变(S714C)的基于细胞的研究复制了酶学研究结果,并揭示其导致全基因组甲基化的急剧丧失。总之,DNMT3A 突变导致不同程度的活性、与表观遗传机制成分的相互作用和细胞变化。