Suppr超能文献

具有治愈比例的区间删失数据的单变化点风险函数估计

Estimation in the single change-point hazard function for interval-censored data with a cure fraction.

作者信息

Wang Bing, Wang Xiaoguang, Song Lixin

机构信息

School of Mathematical Sciences, Dalian University of Technology, Dalian, People's Republic of China.

出版信息

J Appl Stat. 2019 Jun 27;47(2):231-247. doi: 10.1080/02664763.2019.1635571. eCollection 2020.

Abstract

In reliability or survival analysis, the hazard function plays a significant part for it can display the instantaneous failure rate at any time point. In practice, the abrupt change in hazard function at an unknown time point may occur after a maintenance activity or major operation. Under these circumstances, identifying the change point and estimating the size of the change are meaningful. In this paper, we assume that the hazard function is piecewise constant with a single jump at an unknown time. We propose the single change-point model for interval-censored survival data with a cure fraction. Estimation methods for the proposed model are investigated, and large-sample properties of the estimators are established. Simulation studies are carried out to evaluate the performance of the estimating method. The liver cancer data and breast cancer data are analyzed as the applications.

摘要

在可靠性或生存分析中,风险函数起着重要作用,因为它可以显示任何时间点的瞬时故障率。在实际中,在维护活动或重大手术后,风险函数可能会在未知时间点发生突变。在这种情况下,识别变化点并估计变化的大小是有意义的。在本文中,我们假设风险函数是分段常数,在未知时间有一个单一跳跃。我们提出了具有治愈比例的区间删失生存数据的单一变化点模型。研究了所提出模型的估计方法,并建立了估计量的大样本性质。进行了模拟研究以评估估计方法的性能。作为应用,对肝癌数据和乳腺癌数据进行了分析。

相似文献

1
Estimation in the single change-point hazard function for interval-censored data with a cure fraction.
J Appl Stat. 2019 Jun 27;47(2):231-247. doi: 10.1080/02664763.2019.1635571. eCollection 2020.
2
Estimation of a change point in a hazard function based on censored data.
Lifetime Data Anal. 2003 Dec;9(4):395-411. doi: 10.1023/b:lida.0000012424.71723.9d.
3
Estimating the survival functions for right-censored and interval-censored data with piecewise constant hazard functions.
Contemp Clin Trials. 2013 Jul;35(2):122-7. doi: 10.1016/j.cct.2013.04.009. Epub 2013 May 9.
4
Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction.
Lifetime Data Anal. 2022 Jan;28(1):68-88. doi: 10.1007/s10985-021-09536-2. Epub 2021 Oct 8.
5
Computationally Efficient Estimation for the Generalized Odds Rate Mixture Cure Model with Interval-Censored Data.
J Comput Graph Stat. 2018;27(1):48-58. doi: 10.1080/10618600.2017.1349665. Epub 2018 Feb 1.
6
Regression modelling of interval censored data based on the adaptive ridge procedure.
J Appl Stat. 2021 Jun 23;49(13):3319-3343. doi: 10.1080/02664763.2021.1944996. eCollection 2022.
7
On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring.
Stat Methods Med Res. 2020 Dec;29(12):3804-3817. doi: 10.1177/0962280220942555. Epub 2020 Jul 20.
8
New methods for the additive hazards model with the informatively interval-censored failure time data.
Biom J. 2021 Oct;63(7):1507-1525. doi: 10.1002/bimj.202000288. Epub 2021 Jul 3.
9
An additive hazards cure model with informative interval censoring.
Lifetime Data Anal. 2021 Apr;27(2):244-268. doi: 10.1007/s10985-021-09515-7. Epub 2021 Jan 22.
10
A semiparametric mixture model approach for regression analysis of partly interval-censored data with a cured subgroup.
Stat Methods Med Res. 2021 Aug;30(8):1890-1903. doi: 10.1177/09622802211023985. Epub 2021 Jul 1.

本文引用的文献

1
Detecting multiple change points in piecewise constant hazard functions.
J Appl Stat. 2011 Jan 1;38(11):2523-2532. doi: 10.1080/02664763.2011.559209. Epub 2011 Mar 9.
2
3
Estimation of a change point in a hazard function based on censored data.
Lifetime Data Anal. 2003 Dec;9(4):395-411. doi: 10.1023/b:lida.0000012424.71723.9d.
4
Variance estimation of a survival function for interval-censored survival data.
Stat Med. 2001 Apr 30;20(8):1249-57. doi: 10.1002/sim.719.
5
A nonparametric mixture model for cure rate estimation.
Biometrics. 2000 Mar;56(1):237-43. doi: 10.1111/j.0006-341x.2000.00237.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验