Niskanen J, Vladyka A, Niemi J, Sahle C J
Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland.
European Synchrotron Radiation Source, 71 Avenue des Martyrs, 38000 Grenoble, France.
R Soc Open Sci. 2022 Jun 8;9(6):220093. doi: 10.1098/rsos.220093. eCollection 2022 Jun.
We explore the sensitivity of several core-level spectroscopic methods to the underlying atomistic structure by using the water molecule as our test system. We first define a metric that measures the magnitude of spectral change as a function of the structure, which allows for identifying structural regions with high spectral sensitivity. We then apply machine-learning-emulator-based decomposition of the structural parameter space for maximal explained spectral variance, first on overall spectral profile and then on chosen integrated regions of interest therein. The presented method recovers more spectral variance than partial least-squares fitting and the observed behaviour is well in line with the aforementioned metric for spectral sensitivity. The analysis method is able to independently identify spectroscopically dominant degrees of freedom, and to quantify their effect and significance.
我们以水分子作为测试系统,探索了几种芯能级光谱方法对潜在原子结构的灵敏度。我们首先定义了一个度量标准,该标准测量光谱变化幅度作为结构的函数,这有助于识别具有高光谱灵敏度的结构区域。然后,我们应用基于机器学习模拟器的结构参数空间分解,以实现最大的光谱方差解释,首先针对整体光谱轮廓,然后针对其中选定的感兴趣积分区域。所提出的方法比偏最小二乘拟合恢复了更多的光谱方差,并且观察到的行为与上述光谱灵敏度度量标准非常吻合。该分析方法能够独立识别光谱上占主导地位的自由度,并量化它们的影响和重要性。