Suppr超能文献

基于模拟器的芯能级谱结构敏感性分解

Emulator-based decomposition for structural sensitivity of core-level spectra.

作者信息

Niskanen J, Vladyka A, Niemi J, Sahle C J

机构信息

Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland.

European Synchrotron Radiation Source, 71 Avenue des Martyrs, 38000 Grenoble, France.

出版信息

R Soc Open Sci. 2022 Jun 8;9(6):220093. doi: 10.1098/rsos.220093. eCollection 2022 Jun.

Abstract

We explore the sensitivity of several core-level spectroscopic methods to the underlying atomistic structure by using the water molecule as our test system. We first define a metric that measures the magnitude of spectral change as a function of the structure, which allows for identifying structural regions with high spectral sensitivity. We then apply machine-learning-emulator-based decomposition of the structural parameter space for maximal explained spectral variance, first on overall spectral profile and then on chosen integrated regions of interest therein. The presented method recovers more spectral variance than partial least-squares fitting and the observed behaviour is well in line with the aforementioned metric for spectral sensitivity. The analysis method is able to independently identify spectroscopically dominant degrees of freedom, and to quantify their effect and significance.

摘要

我们以水分子作为测试系统,探索了几种芯能级光谱方法对潜在原子结构的灵敏度。我们首先定义了一个度量标准,该标准测量光谱变化幅度作为结构的函数,这有助于识别具有高光谱灵敏度的结构区域。然后,我们应用基于机器学习模拟器的结构参数空间分解,以实现最大的光谱方差解释,首先针对整体光谱轮廓,然后针对其中选定的感兴趣积分区域。所提出的方法比偏最小二乘拟合恢复了更多的光谱方差,并且观察到的行为与上述光谱灵敏度度量标准非常吻合。该分析方法能够独立识别光谱上占主导地位的自由度,并量化它们的影响和重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d7/9174725/3fde7a4f05ab/rsos220093f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验