Rodríguez-Martínez Xabier, Riera-Galindo Sergi, Cong Jiayan, Österberg Thomas, Campoy-Quiles Mariano, Inganäs Olle
Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
Epishine AB Wahlbecksgatan 25 Linköping 58213 Sweden.
J Mater Chem A Mater. 2022 Apr 19;10(19):10768-10779. doi: 10.1039/d2ta01205g. eCollection 2022 May 17.
The desired attributes of organic photovoltaics (OPV) as a low cost and sustainable energy harvesting technology demand the use of non-halogenated solvent processing for the photoactive layer (PAL) materials, preferably of low synthetic complexity (SC) and without compromising the power conversion efficiency (PCE). Despite their record PCEs, most donor-acceptor conjugated copolymers in combination with non-fullerene acceptors are still far from upscaling due to their high cost and SC. Here we present a non-halogenated and low SC ink formulation for the PAL of organic solar cells, comprising PTQ10 and PCBM as donor and acceptor materials, respectively, showing a record PCE of 7.5% in blade coated devices under 1 sun, and 19.9% under indoor LED conditions. We further study the compatibility of the PAL with 5 different electron transport layers (ETLs) in inverted architecture. We identify that commercial ZnO-based formulations together with a methanol-based polyethyleneimine-Zn (PEI-Zn) chelated ETL ink are the most suitable interlayers for outdoor conditions, providing fill factors as high as 74% and excellent thickness tolerance (up to 150 nm for the ETL, and >200 nm for the PAL). In indoor environments, SnO shows superior performance as it does not require UV photoactivation. Semi-transparent devices manufactured entirely in air lamination show indoor PCEs exceeding 10% while retaining more than 80% of the initial performance after 400 and 350 hours of thermal and light stress, respectively. As a result, PTQ10:PCBM combined with either PEI-Zn or SnO is currently positioned as a promising system for industrialisation of low cost, multipurpose OPV modules.
作为一种低成本且可持续的能量收集技术,有机光伏(OPV)所需的特性要求对光活性层(PAL)材料采用非卤化溶剂处理,最好是合成复杂度低(SC)且不影响功率转换效率(PCE)。尽管一些供体 - 受体共轭共聚物与非富勒烯受体结合时具有创纪录的PCE,但由于成本高和合成复杂度高,大多数此类材料仍远未实现大规模应用。在此,我们展示了一种用于有机太阳能电池PAL的非卤化且低合成复杂度的油墨配方,分别包含PTQ10和PCBM作为供体和受体材料,在1个太阳光照下,刮刀涂布器件的PCE达到创纪录的7.5%,在室内LED条件下为19.9%。我们进一步研究了PAL与5种不同的倒置结构电子传输层(ETL)的兼容性。我们发现,基于商业ZnO的配方以及基于甲醇的聚乙烯亚胺 - 锌(PEI - Zn)螯合ETL油墨是户外条件下最合适的中间层,填充因子高达74%,并且具有出色的厚度耐受性(ETL可达150 nm,PAL大于200 nm)。在室内环境中,SnO表现出优异的性能,因为它不需要紫外光活化。完全在空气层压中制造的半透明器件在室内PCE超过10%,同时在分别经过400小时热应力和350小时光照应力后,仍保留超过80%的初始性能。因此,PTQ10:PCBM与PEI - Zn或SnO结合目前被定位为低成本、多功能OPV模块工业化的有前景的体系。