Suppr超能文献

一种用于统计活动范围估计的新选择标准。

A new selection criterion for statistical home range estimation.

作者信息

Baíllo A, Chacón J E

机构信息

Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain.

Departamento de Matemáticas, Universidad de Extremadura, Badajoz, Spain.

出版信息

J Appl Stat. 2020 Sep 21;49(3):722-737. doi: 10.1080/02664763.2020.1822302. eCollection 2022.

Abstract

The home range of an animal describes the geographic area where this individual spends most of the time while doing its usual activities. From a statistical viewpoint, the problem of home range estimation can be considered as a set estimation one. In the ecological literature, there are a variety of home range estimators. We address the open question of choosing the 'best' home range from a collection of them constructed on the same sample. We introduce the penalized overestimation ratio, a numerical index to rank the estimated home ranges. The key idea is to balance the excess area covered by the estimator (with respect to the sample) and a shape descriptor measuring the over-adjustment of the home range to the data. To our knowledge, apart from computing the home range area, our ranking procedure is the first one both applicable to real data and to any type of home range estimator. Further, optimization of the selection index provides a way to select the tuning parameters of nonparametric home ranges. For illustration purposes, we apply our selection proposal to a dataset of a Mongolian wolf and we carry out a simulation study.

摘要

动物的活动范围描述了该个体在进行日常活动时大部分时间所花费的地理区域。从统计学角度来看,活动范围估计问题可被视为一个集合估计问题。在生态学文献中,有多种活动范围估计方法。我们解决了从基于相同样本构建的一组估计方法中选择“最佳”活动范围这一开放性问题。我们引入了惩罚高估比率,这是一个用于对估计的活动范围进行排序的数值指标。关键思想是平衡估计器覆盖的多余区域(相对于样本)以及一个衡量活动范围对数据过度调整的形状描述符。据我们所知,除了计算活动范围面积外,我们的排序程序是第一个既适用于实际数据又适用于任何类型活动范围估计方法的程序。此外,选择指标的优化提供了一种选择非参数活动范围调整参数的方法。为了说明目的,我们将我们的选择方案应用于一个蒙古狼数据集,并进行了模拟研究。

相似文献

1
A new selection criterion for statistical home range estimation.一种用于统计活动范围估计的新选择标准。
J Appl Stat. 2020 Sep 21;49(3):722-737. doi: 10.1080/02664763.2020.1822302. eCollection 2022.
3
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验