Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Schlossallee 2, Radolfzell, Germany.
J Anim Ecol. 2012 Jul;81(4):738-46. doi: 10.1111/j.1365-2656.2012.01955.x. Epub 2012 Feb 20.
1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks.
新开发的布朗桥运动模型(BBMM)具有优于传统方法的优势,因为它根据动物的运动路径而不是单个点来量化动物的利用分布,并考虑了时间自相关和大数据量。然而,BBMM 假设所有数据的运动行为都是不现实的均匀的。
准确量化利用分布对于确定动物如何利用景观非常重要。
我们通过允许行为发生变化,使用似然统计来确定动物运动路径上的变化点,从而改进 BBMM。
这种新颖的扩展,通过模拟和一个领地哺乳动物和候鸟的示例,优于当前的 BBMM。我们的模型能够处理不规则采样轨迹的独特能力对于 GPS 标签来说非常重要,这些 GPS 标签经常出现固定故障或动态采样计划。此外,我们的模型扩展提供了一种沿着动物轨迹的行为变化的有用一维度量。
这种新方法提供了更准确的利用分布,更好地描述了实际的、行为异质轨迹的空间利用。