Manté C, Cornu S, Borschneck D, Mocuta C, van den Bogaert R
Université du Sud Toulon-Var, CNRS/INSU,IRD, Aix-Marseille Université, Marseille, France.
CNRS, IRD, INRA, Coll France, CEREGE, Aix Marseille Université, Aix-en-Provence, France.
J Appl Stat. 2020 Aug 26;49(2):291-316. doi: 10.1080/02664763.2020.1810644. eCollection 2022.
We propose a method for detecting a Guttman effect in a complete disjunctive table with questions. Since such an investigation is a nonsense when the variables are independent, we reuse a previous unpublished work about the chi-squared independence test for Burt's tables. Then, we introduce a two-steps method consisting in plugging the first singular vector from a preliminary Correspondence Analysis (CA) of as a score into a subsequent singly-ordered Ordinal Correspondence Analysis (OCA) of . OCA mainly consists in completing by a sequence of orthogonal polynomials superseding the classical factors of CA. As a consequence, in presence of a pure Guttman effect, we should in principle have that the second singular vector coincide with the polynomial of degree 2, etc. The hybrid decomposition of the Pearson chi-squared statistics (resulting from OCA) used in association with permutation tests makes possible to reveal such relationships, the presence of a Guttman effect in the structure of , and to determine its degree - with an accuracy depending on the signal to noise ratio. The proposed method is successively tested on artificial data (more or less noisy), a well-known benchmark, and synchrotron X-ray diffraction data of soil samples.
我们提出了一种在带有问题的完全析取表中检测古特曼效应的方法。由于当变量相互独立时进行这样的研究毫无意义,我们重新采用了之前一篇关于伯特表卡方独立性检验的未发表作品。然后,我们引入一种两步法,该方法包括将初步对应分析(CA)中得到的第一个奇异向量作为得分代入后续的单序序数对应分析(OCA)中。OCA主要包括用一系列正交多项式取代CA的经典因子来完善分析。因此,在存在纯古特曼效应的情况下,原则上我们应该使第二个奇异向量与二次多项式等一致。将用于置换检验的皮尔逊卡方统计量(由OCA得出)的混合分解使得揭示这种关系、在结构中是否存在古特曼效应以及确定其程度成为可能——其准确性取决于信噪比。所提出的方法先后在人工数据(或多或少带有噪声)、一个著名的基准数据集以及土壤样品的同步辐射X射线衍射数据上进行了测试。