Suppr超能文献

测量多元关联及其他。

Measuring multivariate association and beyond.

作者信息

Josse Julie, Holmes Susan

机构信息

Department of Statistics, Agrocampus Ouest - INRIA, Saclay Paris Sud University, France.

Department of Statistics, Stanford University, California, USA.

出版信息

Stat Surv. 2016;10:132-167. doi: 10.1214/16-SS116. Epub 2016 Nov 17.

Abstract

Simple correlation coefficients between two variables have been generalized to measure association between two matrices in many ways. Coefficients such as the RV coefficient, the distance covariance (dCov) coefficient and kernel based coefficients are being used by different research communities. Scientists use these coefficients to test whether two random vectors are linked. Once it has been ascertained that there is such association through testing, then a next step, often ignored, is to explore and uncover the association's underlying patterns. This article provides a survey of various measures of dependence between random vectors and tests of independence and emphasizes the connections and differences between the various approaches. After providing definitions of the coefficients and associated tests, we present the recent improvements that enhance their statistical properties and ease of interpretation. We summarize multi-table approaches and provide scenarii where the indices can provide useful summaries of heterogeneous multi-block data. We illustrate these different strategies on several examples of real data and suggest directions for future research.

摘要

两个变量之间的简单相关系数已被广泛推广,用于以多种方式度量两个矩阵之间的关联。不同的研究群体使用诸如RV系数、距离协方差(dCov)系数和基于核的系数等。科学家们使用这些系数来检验两个随机向量是否相关联。一旦通过检验确定存在这种关联,那么接下来一个常常被忽视的步骤就是探索并揭示这种关联的潜在模式。本文对随机向量之间各种相依性度量以及独立性检验进行了综述,并强调了各种方法之间的联系与差异。在给出系数及相关检验的定义之后,我们介绍了最近的改进,这些改进增强了它们的统计特性并便于解释。我们总结了多表方法,并给出了一些场景,在这些场景中这些指标可以为异构多块数据提供有用的汇总。我们在几个实际数据示例中说明了这些不同的策略,并提出了未来研究的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743d/5658146/63bfc7071961/nihms897071f1.jpg

相似文献

1
Measuring multivariate association and beyond.测量多元关联及其他。
Stat Surv. 2016;10:132-167. doi: 10.1214/16-SS116. Epub 2016 Nov 17.
5
Dependence and independence: Structure and inference.依赖性与独立性:结构与推理
Stat Methods Med Res. 2017 Oct;26(5):2114-2132. doi: 10.1177/0962280215594198. Epub 2015 Jul 29.
7
CONDITIONAL DISTANCE CORRELATION.条件距离相关性
J Am Stat Assoc. 2015;110(512):1726-1734. doi: 10.1080/01621459.2014.993081. Epub 2015 Jan 23.
9
Estimating Feature-Label Dependence Using Gini Distance Statistics.使用基尼距离统计量估计特征-标签依赖性。
IEEE Trans Pattern Anal Mach Intell. 2021 Jun;43(6):1947-1963. doi: 10.1109/TPAMI.2019.2960358. Epub 2021 May 11.

引用本文的文献

本文引用的文献

4
A distance-based test of association between paired heterogeneous genomic data.基于距离的成对异质基因组数据关联检验。
Bioinformatics. 2013 Oct 15;29(20):2555-63. doi: 10.1093/bioinformatics/btt450. Epub 2013 Aug 5.
10
Matrix correlations for high-dimensional data: the modified RV-coefficient.高维数据的矩阵相关性:修正的RV系数。
Bioinformatics. 2009 Feb 1;25(3):401-5. doi: 10.1093/bioinformatics/btn634. Epub 2008 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验