Vaidya Pranjal, Bera Kaustav, Linden Philip A, Gupta Amit, Rajiah Prabhakar Shantha, Jones David R, Bott Matthew, Pass Harvey, Gilkeson Robert, Jacono Frank, Hsieh Kevin Li-Chun, Lan Gong-Yau, Velcheti Vamsidhar, Madabhushi Anant
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.
Front Oncol. 2022 May 30;12:902056. doi: 10.3389/fonc.2022.902056. eCollection 2022.
The timing and nature of surgical intervention for semisolid abnormalities are dependent upon distinguishing between adenocarcinoma- (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (INV). We sought to develop and evaluate a quantitative imaging method to determine invasiveness of small, ground-glass lesions on computed tomography (CT) chest scans.
The study comprised 268 patients from 4 institutions with resected (<=3 cm) semisolid lesions with confirmed histopathological diagnosis of MIA/AIS or INV. A total of 248 radiomic texture features from within the tumor nodule (intratumoral) and adjacent to the nodule (peritumoral) were extracted from manually annotated lung nodules of chest CT scans. The datasets were randomly divided, with 40% of patients used for training and 60% used for testing the machine classifier (Training D, N=106; Testing, D N=162).
The top five radiomic stable features included four intratumoral (Laws and Haralick feature families) and one peritumoral feature within 3 to 6 mm of the nodule (CoLlAGe feature family), which successfully differentiated INV from MIA/AIS nodules with an AUC of 0.917 [0.867-0.967] on D and 0.863 [0.79-0.931] on D. The radiomics model successfully differentiated INV from MIA cases (<1 cm AUC: 0.76 [0.53-0.98], 1-2 cm AUC: 0.92 [0.85-0.98], 2-3 cm AUC: 0.95 [0.88-1]). The final integrated model combining the classifier with the radiologists' score gave the best AUC on D (AUC=0.909, p<0.001).
Addition of advanced image analysis radiomics to the routine visual assessment of CT scans help better differentiate adenocarcinoma subtypes and can aid in clinical decision making. Further prospective validation in this direction is warranted.
对半实性异常进行手术干预的时机和性质取决于区分原位腺癌(AIS)、微浸润腺癌(MIA)和浸润性腺癌(INV)。我们试图开发并评估一种定量成像方法,以确定胸部计算机断层扫描(CT)上小的磨玻璃样病变的浸润性。
该研究纳入了来自4家机构的268例患者,这些患者的半实性病变(<=3 cm)经手术切除,组织病理学确诊为MIA/AIS或INV。从胸部CT扫描中手动标注的肺结节中提取肿瘤结节内(瘤内)和结节相邻区域(瘤周)共248个影像组学纹理特征。数据集被随机划分,40%的患者用于训练,60%的患者用于测试机器分类器(训练组,N = 106;测试组,N = 162)。
排名前5的影像组学稳定特征包括4个瘤内特征(Laws和Haralick特征家族)和1个距结节3至6 mm内的瘤周特征(CoLlAGe特征家族),其在测试组(D)中成功区分INV与MIA/AIS结节的曲线下面积(AUC)为0.917 [0.867 - 0.967],在训练组(D)中为0.863 [0.79 - 0.931]。影像组学模型成功区分了INV与MIA病例(<1 cm的AUC:0.76 [0.53 - 0.98],1 - 2 cm的AUC:0.92 [0.85 - 0.98],2 - 3 cm的AUC:0.95 [0.88 - 1])。将分类器与放射科医生评分相结合的最终综合模型在测试组(D)中获得了最佳AUC(AUC = 0.909,p<0.001)。
在CT扫描的常规视觉评估中加入先进的图像分析——影像组学,有助于更好地区分腺癌亚型,并有助于临床决策。有必要在这个方向上进行进一步的前瞻性验证。