Suppr超能文献

ADAM:使用深度学习对骨活检图像进行自动化数字表型分析和形态纹理分析。

ADAM: automated digital phenotyping and morphological texture analysis of bone biopsy images using deep learning.

作者信息

Bharadwaj Satvika, Lima Florence, Pathak Tilak Bahadur, Dhamdhere Rohan, Fu Pingfu, Malluche Hartmut, Rao Madhumathi, Madabhushi Anant

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States.

Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40508, United States.

出版信息

JBMR Plus. 2025 Feb 10;9(4):ziaf028. doi: 10.1093/jbmrpl/ziaf028. eCollection 2025 Apr.

Abstract

Histomorphometric analysis of undecalcified bone biopsy images provides quantitative assessment of bone turnover, volume, and mineralization using static and dynamic parameters. Traditionally, quantification has relied on manual annotation and tracing of relevant tissue structures, a process that is time-intensive and subject to inter-operator variability. We developed ADAM, an automated pipeline for digital phenotyping, to quantify tissue and cellular components pertinent to static histomorphometric parameters such as bone and osteoid area, osteoclast and osteoblast count, and bone marrow adipose tissue (BMAT) area. The pipeline allowed rapid generation of delineated tissue and cell maps for up to 20 images in less than a minute. Comparing deep learning-generated annotation pixels with manual annotations, we observed Spearman correlation coefficients of ρ = 0.99 for both mineralized bone and osteoid, and ρ = 0.94 for BMAT. For osteoclast and osteoblast cell counts, which are subject to morphologic heterogeneity, using only brightfield microscopic images and without additional staining, we noted ρ = 0.60 and 0.69, respectively (inter-operator correlation was ρ = 0.62 for osteoclast and 0.84 for osteoblast count). The study also explored the application of morphological texture analysis (MTA), measuring relative pixel patterns that potentially vary with diverse tissue conditions. Notably, MTA from mineralized bone, osteoid, and BMAT showed differentiating potential to identify common pixel characteristics between images labeled as low or high bone turnover based upon the final diagnostic report of the bone biopsy. The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) obtained for BMAT MTA features as a classifier for bone turnover, was 0.87, suggesting that computer-extracted features, not discernable to the human eye, hold potential in classifying tissue states. With additional evaluation, ADAM could be potentially integrated into existing clinical routines to improve pathology workflows and contribute to diagnostic insights into bone biopsy evaluation and reporting.

摘要

对未脱钙骨活检图像进行组织形态计量分析,可利用静态和动态参数对骨转换、骨体积和矿化进行定量评估。传统上,定量分析依赖于对相关组织结构的手动标注和追踪,这一过程耗时且存在操作者间的差异。我们开发了ADAM,一种用于数字表型分析的自动化流程,以量化与静态组织形态计量参数相关的组织和细胞成分,如骨和类骨质面积、破骨细胞和成骨细胞计数以及骨髓脂肪组织(BMAT)面积。该流程能够在不到一分钟的时间内快速生成多达20张图像的组织和细胞轮廓图。将深度学习生成的标注像素与手动标注进行比较,我们发现矿化骨和类骨质的斯皮尔曼相关系数ρ = 0.99,BMAT的相关系数ρ = 0.94。对于受形态异质性影响的破骨细胞和成骨细胞计数,仅使用明场显微镜图像且无需额外染色时,我们分别注意到相关系数ρ = 0.60和0.69(破骨细胞的操作者间相关性为ρ = 0.62,成骨细胞计数的操作者间相关性为ρ = 0.84)。该研究还探索了形态纹理分析(MTA)的应用,测量可能因不同组织状况而变化的相对像素模式。值得注意的是,基于骨活检的最终诊断报告,来自矿化骨、类骨质和BMAT的MTA显示出区分潜力,可识别标记为低或高骨转换的图像之间的共同像素特征。作为骨转换分类器的BMAT MTA特征的受试者操作特征曲线下面积(AUC-ROC)为0.87,这表明计算机提取的、人眼无法辨别的特征在组织状态分类方面具有潜力。经过进一步评估,ADAM可能会被整合到现有的临床流程中,以改善病理工作流程,并有助于对骨活检评估和报告提供诊断见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f8/11931614/85973460f4bc/ziaf028ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验