Suppr超能文献

用于预测治疗反应的新型定量成像:技术与临床应用

Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications.

作者信息

Bera Kaustav, Velcheti Vamsidhar, Madabhushi Anant

机构信息

From the Case Western Reserve University, Cleveland, OH; Cleveland Clinic Foundation, Cleveland, OH.

出版信息

Am Soc Clin Oncol Educ Book. 2018 May 23;38(38):1008-1018. doi: 10.1200/EDBK_199747.

Abstract

The current standard of Response Evaluation Criteria in Solid Tumors (RECIST)-based tumor response evaluation is limited in its ability to accurately monitor treatment response. Radiomics, an approach involving computerized extraction of several quantitative imaging features, has shown promise in predicting as well as monitoring response to therapy. In this article, we provide a brief overview of radiomic approaches and the various analytical methods and techniques, specifically in the context of predicting and monitoring treatment response for non-small cell lung cancer (NSCLC). We briefly summarize some of the various types of radiomic features, including tumor shape and textural patterns, both within the tumor and within the adjacent tumor microenvironment. Additionally, we also discuss work in delta-radiomics or change in radiomic features (e.g., texture within the nodule) across longitudinally interspersed images in time for monitoring changes in therapy. We discuss the utility of these approaches for NSCLC, specifically the role of radiomics as a prognostic marker for treatment effectiveness and early therapy response, including chemoradiation, immunotherapy, and trimodality therapy.

摘要

目前基于实体瘤疗效评价标准(RECIST)的肿瘤反应评估标准,在准确监测治疗反应方面能力有限。放射组学是一种涉及从计算机化提取多种定量成像特征的方法,在预测以及监测治疗反应方面已显示出前景。在本文中,我们简要概述放射组学方法以及各种分析方法和技术,特别是在预测和监测非小细胞肺癌(NSCLC)治疗反应的背景下。我们简要总结了一些不同类型的放射组学特征,包括肿瘤形状和纹理模式,在肿瘤内部以及相邻肿瘤微环境中均有涉及。此外,我们还讨论了在时间上纵向穿插的图像中进行的增量放射组学或放射组学特征变化(例如结节内的纹理)的工作,以监测治疗变化。我们讨论了这些方法对NSCLC的实用性,特别是放射组学作为治疗效果和早期治疗反应(包括放化疗、免疫治疗和三联疗法)的预后标志物的作用。

相似文献

1
Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications.
Am Soc Clin Oncol Educ Book. 2018 May 23;38(38):1008-1018. doi: 10.1200/EDBK_199747.
3
CT radiomics-based model for predicting TMB and immunotherapy response in non-small cell lung cancer.
BMC Med Imaging. 2024 Feb 15;24(1):45. doi: 10.1186/s12880-024-01221-8.
10
Systematic review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes.
Methods. 2021 Apr;188:61-72. doi: 10.1016/j.ymeth.2020.11.005. Epub 2020 Dec 1.

引用本文的文献

2
Attention mechanism-based habitat analysis for predicting pleural invasion and prognosis of pulmonary nodules.
Transl Lung Cancer Res. 2025 May 30;14(5):1596-1610. doi: 10.21037/tlcr-2024-1122. Epub 2025 May 28.
3
Predicting the immune therapy response of advanced non-small cell lung cancer based on primary tumor and lymph node radiomics features.
Front Med (Lausanne). 2025 Apr 3;12:1541376. doi: 10.3389/fmed.2025.1541376. eCollection 2025.
4
Neoadjuvant cabozantinib for locally advanced nonmetastatic clear cell renal cell carcinoma: a phase 2 trial.
Nat Cancer. 2025 Mar;6(3):432-444. doi: 10.1038/s43018-025-00922-5. Epub 2025 Feb 27.
8
Transfer learning approach in pre-treatment CT images to predict therapeutic response in advanced malignant pleural mesothelioma.
Front Oncol. 2024 Sep 16;14:1432188. doi: 10.3389/fonc.2024.1432188. eCollection 2024.
10
Delta radiomics: an updated systematic review.
Radiol Med. 2024 Aug;129(8):1197-1214. doi: 10.1007/s11547-024-01853-4. Epub 2024 Jul 17.

本文引用的文献

1
Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer.
Sci Rep. 2018 Jan 31;8(1):1922. doi: 10.1038/s41598-018-20471-5.
4
Critical features and challenges associated with imaging in patients undergoing cancer immunotherapy.
Crit Rev Oncol Hematol. 2017 Dec;120:13-21. doi: 10.1016/j.critrevonc.2017.09.017. Epub 2017 Oct 10.
7
FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer.
Eur J Nucl Med Mol Imaging. 2018 Mar;45(3):365-375. doi: 10.1007/s00259-017-3855-5. Epub 2017 Oct 18.
8
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.
AJNR Am J Neuroradiol. 2018 Feb;39(2):208-216. doi: 10.3174/ajnr.A5391. Epub 2017 Oct 5.
9
Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
Clin Cancer Res. 2017 Dec 1;23(23):7253-7262. doi: 10.1158/1078-0432.CCR-17-1038. Epub 2017 Sep 22.
10
PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: New development and challenges.
Cancer Lett. 2017 Oct 1;405:29-37. doi: 10.1016/j.canlet.2017.06.033. Epub 2017 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验