Tabrizi Elham, Bahrami Samani Ehsan, Ganjali Mojtaba
Department of Statistics, Faculty of Mathematical Science, Shahid Beheshti University, Tehran, Iran.
J Appl Stat. 2020 Mar 24;48(5):765-785. doi: 10.1080/02664763.2020.1745765. eCollection 2021.
Using a multivariate latent variable approach, this article proposes some new general models to analyze the correlated bounded continuous and categorical (nominal or/and ordinal) responses with and without non-ignorable missing values. First, we discuss regression methods for jointly analyzing continuous, nominal, and ordinal responses that we motivated by analyzing data from studies of toxicity development. Second, using the beta and Dirichlet distributions, we extend the models so that some bounded continuous responses are replaced for continuous responses. The joint distribution of the bounded continuous, nominal and ordinal variables is decomposed into a marginal multinomial distribution for the nominal variable and a conditional multivariate joint distribution for the bounded continuous and ordinal variables given the nominal variable. We estimate the regression parameters under the new general location models using the maximum-likelihood method. Sensitivity analysis is also performed to study the influence of small perturbations of the parameters of the missing mechanisms of the model on the maximal normal curvature. The proposed models are applied to two data sets: BMI, Steatosis and Osteoporosis data and Tehran household expenditure budgets.
本文采用多变量潜变量方法,提出了一些新的通用模型,用于分析存在和不存在不可忽略缺失值情况下的相关有界连续变量和分类变量(名义变量或/和有序变量)响应。首先,我们讨论通过分析毒性发展研究数据而得到启发的联合分析连续变量、名义变量和有序变量的回归方法。其次,使用贝塔分布和狄利克雷分布,我们对模型进行扩展,以便用一些有界连续响应替代连续响应。有界连续变量、名义变量和有序变量的联合分布被分解为名义变量的边际多项分布以及给定名义变量时的有界连续变量和有序变量的条件多变量联合分布。我们使用最大似然法在新的通用位置模型下估计回归参数。还进行了敏感性分析,以研究模型缺失机制参数的小扰动对最大法曲率的影响。所提出的模型应用于两个数据集:BMI、脂肪变性和骨质疏松症数据以及德黑兰家庭支出预算。