Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden.
Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig.
Haematologica. 2023 Mar 1;108(3):690-704. doi: 10.3324/haematol.2021.280027.
Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77-0.86 and between 0.63-0.74, respectively in our test set, and between 0.71-0.80 and 0.65-0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
完全缓解是急性髓系白血病(AML)治疗的一个重要里程碑,而难治性疾病则预后不良。因此,准确识别风险患者对于根据疾病生物学为每个患者量身定制治疗方案至关重要。我们使用了 9 种机器学习(ML)模型来预测接受强化诱导治疗的 1383 例 AML 患者的完全缓解和 2 年总生存率。纳入了临床、实验室、细胞遗传学和分子遗传学数据,我们的结果在一个外部多中心队列中得到了验证。我们的 ML 模型自主选择了预测特征,包括有利或不利风险的既定标志物,以及确定迄今为止具有争议相关性的标志物。初诊时为新发 AML、髓外 AML、双突变 CEBPA、CEBPA-bZIP 突变、NPM1、FLT3-ITD、ASXL1、RUNX1、SF3B1、IKZF1、TP53 和 U2AF1、t(8;21)、inv(16)/t(16;16)、del(5)/del(5q)、del(17)/del(17p)、正常或复杂核型、年龄和初诊时血红蛋白浓度是完全缓解的统计学显著预测标志物,而 t(8;21)、del(5)/del(5q)、inv(16)/t(16;16)、del(17)/del(17p)、双突变 CEBPA、CEBPA-bZIP、NPM1、FLT3-ITD、DNMT3A、SF3B1、U2AF1 和 TP53 突变、年龄、白细胞计数、外周血原始细胞计数、血清乳酸脱氢酶水平和初诊时血红蛋白浓度以及髓外表现均预测 2 年总生存率。在我们的测试集中,用于预测完全缓解和 2 年总生存率的接收者操作特征曲线下面积分别为 0.77-0.86 和 0.63-0.74,在外部验证队列中分别为 0.71-0.80 和 0.65-0.75。我们使用可扩展和可重复使用的 ML 框架,证明了 ML 在 AML 风险分层中的可行性,将 AML 作为血液系统恶性肿瘤的模型疾病。我们的研究说明了 ML 在血液学中的作为决策支持系统的临床适用性。