Eckardt Jan-Niklas, Hahn Waldemar, Ries Rhonda E, Chrost Szymon D, Winter Susann, Stasik Sebastian, Röllig Christoph, Platzbecker Uwe, Müller-Tidow Carsten, Serve Hubert, Baldus Claudia D, Schliemann Christoph, Schäfer-Eckart Kerstin, Hanoun Maher, Kaufmann Martin, Burchert Andreas, Schetelig Johannes, Bornhäuser Martin, Wolfien Markus, Meshinchi Soheil, Thiede Christian, Middeke Jan Moritz
Department of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden Germany.
Else Kröner Fresenius Center for Digital Health TUD Dresden University of Technology Dresden Germany.
Hemasphere. 2025 May 7;9(5):e70132. doi: 10.1002/hem3.70132. eCollection 2025 May.
Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2-year overall survival, achieving area-under-the-curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of , , inv(16), and t(8;21) conferring favorable risk and alterations of , del(5q), -7, and -17 conferring adverse risk, while -ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as , , or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context-sensitive AML treatment strategies.
急性髓系白血病(AML)的风险分层由遗传学驱动,但患者年龄对治疗决策有重大影响。为了评估年龄如何改变基因突变的预后影响,我们汇总了来自多个队列的3062例儿科和成人AML患者的数据。信号通路突变在年轻患者中占主导地位,而随着年龄增长,表观遗传调节因子、剪接体基因的突变以及其他改变变得更加频繁。我们训练机器学习模型来识别预后变量并预测完全缓解和2年总生存率,曲线下面积得分分别为0.801和0.791。使用夏普利(SHAP)值,我们量化了每个变量对模型决策的贡献,并追踪了它们在六个年龄组中的影响:婴儿、儿童、青少年/青年、成人、老年人和高龄老人。在遗传变量中,对模型决策贡献最大的是赋予有利风险的 、 、inv(16)和t(8;21)的改变,以及赋予不利风险的 、del(5q)、-7和-17的改变,而 -ITD的作用不明确,其治疗反应良好但总生存率较差。年龄显著改变了基因改变的预后价值,没有单一的改变能在所有年龄组中一致地预测结果。与衰老相关的特定改变,如 、 或del(5q),在年轻患者中带来的风险 disproportionately 更高。这些结果挑战了统一的风险分层模型,并强调了需要针对具体情况的AML治疗策略。
原文中“disproportionately”未翻译完整,可能是录入有误,完整意思是“不成比例地” 。