Suppr超能文献

用于预测气调包装猪肉排货架期的新型尸胺非侵入式生物传感器技术。

Novel cadaverine non-invasive biosensor technology for the prediction of shelf life of modified atmosphere packed pork cutlets.

机构信息

Food Quality Perception and Society Science Team, iSENSE Lab, Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.

Section of Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Copenhagen, Denmark.

出版信息

Meat Sci. 2022 Oct;192:108876. doi: 10.1016/j.meatsci.2022.108876. Epub 2022 Jun 1.

Abstract

Food waste in perishable products calls for the development of cost-efficient and real-time freshness and shelf life assessment tools. The current study evaluated a newly developed cadaverine biosensor for its ability to assess the sensory freshness stage and microbial quality of modified atmosphere packed (MAP) pork cutlets under a realistic supply chain scenario. The experiment compared the cadaverine levels measured by the biosensor to liquid chromatography - tandem mass spectrometry (LC-MS/MS) cadaverine concentrations, and associated these to the shelf life estimation and freshness states determined by sensory and microbial evaluations during an 18-day storage period (5 °C). Results underlined the potential of cadaverine as a freshness biomarker as well as the applicability of the biosensor as a shelf life prediction tool. This is supported by the correlations obtained between sensory odour freshness evaluation and total viable counts with biosensor cadaverine levels for which the r obtained were 0.97 (<0.001) and 0.95 (<0.001), respectively.

摘要

易腐产品中的食物浪费需要开发具有成本效益和实时的新鲜度和保质期评估工具。本研究评估了一种新开发的腐胺生物传感器,以评估在现实供应链情景下,改良气氛包装(MAP)猪肉片的感官新鲜度阶段和微生物质量。该实验将生物传感器测量的腐胺水平与液相色谱-串联质谱(LC-MS/MS)腐胺浓度进行了比较,并将其与在 18 天的储存期(5°C)期间通过感官和微生物评估确定的保质期估计和新鲜度状态相关联。结果强调了腐胺作为新鲜度生物标志物的潜力以及生物传感器作为保质期预测工具的适用性。这得到了生物传感器腐胺水平与感官气味新鲜度评估和总活菌数之间获得的相关性的支持,其中 r 分别为 0.97(<0.001)和 0.95(<0.001)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验