GRIIS, Université de Sherbrooke, Sherbrooke, Canada.
IRIT-MELODI, CNRS, Toulouse, France.
Methods Inf Med. 2022 Dec;61(S 02):e73-e88. doi: 10.1055/a-1877-9498. Epub 2022 Jun 16.
A large volume of heavily fragmented data is generated daily in different healthcare contexts and is stored using various structures with different semantics. This fragmentation and heterogeneity make secondary use of data a challenge. Data integration approaches that derive a common data model from sources or requirements have some advantages. However, these approaches are often built for a specific application where the research questions are known. Thus, the semantic and structural reconciliation is often not reusable nor reproducible. A recent integration approach using knowledge models has been developed with ontologies that provide a strong semantic foundation. Nonetheless, deriving a data model that captures the richness of the ontology to store data with their full semantic remains a challenging task.
This article addresses the following question: How to design a sharable and interoperable data model for storing heterogeneous healthcare data and their semantic to support various applications?
This article describes a method using an ontological knowledge model to automatically generate a data model for a domain of interest. The model can then be implemented in a relational database which efficiently enables the collection, storage, and retrieval of data while keeping semantic ontological annotations so that the same data can be extracted for various applications for further processing.
This article (1) presents a comparison of existing methods for generating a relational data model from an ontology using 23 criteria, (2) describes standard conversion rules, and (3) presents , a prototype developed to demonstrate the conversion rules.
This work is a first step toward automating and refining the generation of sharable and interoperable relational data models using ontologies with a freely available tool. The remaining challenges to cover all the ontology richness in the relational model are pointed out.
在不同的医疗保健环境中,每天都会生成大量高度碎片化的数据,并使用具有不同语义的各种结构进行存储。这种碎片化和异构性使得二次利用数据成为一项挑战。从数据源或需求中推导出通用数据模型的数据集成方法具有一些优势。然而,这些方法通常是为特定的应用程序构建的,其中研究问题是已知的。因此,语义和结构的协调通常不可重用或不可重现。最近,一种使用知识模型的集成方法已经使用提供了强大语义基础的本体论开发出来了。然而,从本体论中推导出一个能够捕获其丰富语义的数据模型以存储数据仍然是一项具有挑战性的任务。
本文提出了以下问题:如何设计一个可共享和可互操作的数据模型,用于存储异构的医疗保健数据及其语义,以支持各种应用程序?
本文描述了一种使用本体论知识模型自动为感兴趣的领域生成数据模型的方法。然后,可以在关系数据库中实现该模型,该模型能够高效地收集、存储和检索数据,同时保留语义本体论注释,以便可以从各种应用程序中提取相同的数据进行进一步处理。
本文(1)使用 23 个标准比较了从本体论生成关系数据模型的现有方法,(2)描述了标准转换规则,以及(3)展示了一个用于演示转换规则的原型。
这项工作是使用本体论自动生成可共享和可互操作的关系数据模型的第一步,并提供了一个免费可用的工具。本文还指出了在关系模型中涵盖本体论所有丰富度的剩余挑战。