Zhu Tiancong, Ruan Wei, Wang Yan-Qi, Tsai Hsin-Zon, Wang Shuopei, Zhang Canxun, Wang Tianye, Liou Franklin, Watanabe Kenji, Taniguchi Takashi, Neaton Jeffrey B, Weber-Bargioni Alexander, Zettl Alex, Qiu Z Q, Zhang Guangyu, Wang Feng, Moore Joel E, Crommie Michael F
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Department of Physics, University of California, Berkeley, CA, USA.
Nat Mater. 2022 Jul;21(7):748-753. doi: 10.1038/s41563-022-01277-3. Epub 2022 Jun 16.
One-dimensional electron systems exhibit fundamentally different properties than higher-dimensional systems. For example, electron-electron interactions in one-dimensional electron systems have been predicted to induce Tomonaga-Luttinger liquid behaviour. Naturally occurring grain boundaries in single-layer transition metal dichalcogenides exhibit one-dimensional conducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been suggested to explain their behaviour. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and tune their charge carrier concentration. Here we present a scanning tunnelling microscopy and spectroscopy study of gate-tunable mirror twin boundaries in single-layer 1H-MoSe devices. Gating enables scanning tunnelling microscopy and spectroscopy for different mirror twin boundary electron densities, thus allowing precise characterization of electron-electron interaction effects. Visualization of the resulting mirror twin boundary electronic structure allows unambiguous identification of collective density wave excitations having two velocities, in quantitative agreement with the spin-charge separation predicted by finite-length Tomonaga-Luttinger liquid theory.
一维电子系统展现出与高维系统截然不同的特性。例如,一维电子系统中的电子-电子相互作用已被预测会诱发汤川-卢廷格液体行为。单层过渡金属二硫属化物中自然形成的晶界展现出一维导电通道,有人提出这些通道中存在汤川-卢廷格液体,但也有人认为电荷密度波物理可以解释它们的行为。由于无法对这些边界进行静电门控并调节其载流子浓度,对该系统电子基态的明确识别受到了阻碍。在此,我们展示了对单层1H-MoSe器件中门控可调镜面孪晶界的扫描隧道显微镜和光谱研究。门控使得能够针对不同的镜面孪晶界电子密度进行扫描隧道显微镜和光谱分析,从而实现对电子-电子相互作用效应的精确表征。所得镜面孪晶界电子结构的可视化使得能够明确识别具有两种速度的集体密度波激发,这与有限长度汤川-卢廷格液体理论预测的自旋-电荷分离在定量上相符。