Rossi Antonio, Thomas John C, Küchle Johannes T, Barré Elyse, Yu Zhuohang, Zhou Da, Kumari Shalini, Tsai Hsin-Zon, Wong Ed, Jozwiak Chris, Bostwick Aaron, Robinson Joshua A, Terrones Mauricio, Raja Archana, Schwartzberg Adam, Ogletree D Frank, Neaton Jeffrey B, Crommie Michael F, Allegretti Francesco, Auwärter Willi, Rotenberg Eli, Weber-Bargioni Alexander
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Commun. 2025 Jul 1;16(1):5809. doi: 10.1038/s41467-025-60993-x.
Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials. Reports of one-dimensional defects hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation. Here, we study TLL formation within defectively engineered WS atop graphene, where band structure and the atomic environment is visualized with nano angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy, and non-contact atomic force microscopy. Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by one-dimensional metal (1DM) defects. It appears that the vertical heterostructure with graphene and the induced charge transfer from graphene into the 1DM is critical for the formation of a TLL.
一维系统中的Tomonaga-Luttinger液体(TLL)行为已被预测,并已证实在二维材料内的半导体到金属转变中会出现。关于承载费米液体或TLL的一维缺陷的报道表明其依赖于底层衬底,然而,揭示来自衬底的电子贡献的物理细节需要进行交叉关联研究。在此,我们研究了石墨烯上缺陷工程化的WS中TLL的形成,其中通过纳米角分辨光电子能谱、扫描隧道显微镜和光谱以及非接触原子力显微镜对能带结构和原子环境进行了可视化。态密度局部值与电子能带色散之间的相关性阐明了电子从石墨烯转移到由一维金属(1DM)缺陷承载的TLL中的过程。看来,具有石墨烯的垂直异质结构以及从石墨烯到1DM的诱导电荷转移对于TLL的形成至关重要。