Suppr超能文献

利用网络分析模型研究 SARS-CoV-2 大流行对医疗系统内急性患者护理的影响。

Using network analysis to model the effects of the SARS Cov2 pandemic on acute patient care within a healthcare system.

机构信息

Department of Medicine, University of Cambridge, Cambridge, UK.

Department of Information Technology, Mayo Clinic, Rochester, MN, USA.

出版信息

Sci Rep. 2022 Jun 16;12(1):10050. doi: 10.1038/s41598-022-14261-3.

Abstract

Consolidation of healthcare in the US has resulted in integrated organizations, encompassing large geographic areas, with varying services and complex patient flows. Profound changes in patient volumes and behavior have occurred during the SARS Cov2 pandemic, but understanding these across organizations is challenging. Network analysis provides a novel approach to address this. We retrospectively evaluated hospital-based encounters with an index emergency department visit in a healthcare system comprising 18 hospitals, using patient transfer as a marker of unmet clinical need. We developed quantitative models of transfers using network analysis incorporating the level of care provided (ward, progressive care, intensive care) during pre-pandemic (May 25, 2018 to March 16, 2020) and mid-pandemic (March 17, 2020 to March 8, 2021) time periods. 829,455 encounters were evaluated. The system functioned as a non-small-world, non-scale-free, dissociative network. Our models reflected transfer destination diversification and variations in volume between the two time points - results of intentional efforts during the pandemic. Known hub-spoke architecture correlated with quantitative analysis. Applying network analysis in an integrated US healthcare organization demonstrates changing patterns of care and the emergence of bottlenecks in response to the SARS Cov2 pandemic, consistent with clinical experience, providing a degree of face validity. The modelling of multiple influences can identify susceptibility to stress and opportunities to strengthen the system where patient movement is common and voluminous. The technique provides a mechanism to analyze the effects of intentional and contextual changes on system behavior.

摘要

美国的医疗保健整合导致了整合的组织,涵盖了广阔的地理区域,提供各种服务和复杂的患者流动。在 SARS Cov2 大流行期间,患者数量和行为发生了深刻变化,但跨组织理解这些变化具有挑战性。网络分析提供了一种解决此问题的新方法。我们回顾性地评估了一个由 18 家医院组成的医疗系统中基于医院的急诊就诊情况,使用患者转送来标记未满足的临床需求。我们使用网络分析开发了转移的定量模型,其中包括在大流行前(2018 年 5 月 25 日至 2020 年 3 月 16 日)和大流行中期(2020 年 3 月 17 日至 2021 年 3 月 8 日)期间提供的护理水平。评估了 829455 次就诊。该系统作为一个非小世界、非无标度、分离的网络运行。我们的模型反映了转移目的地的多样化和两个时间点之间的流量变化-这是大流行期间有意努力的结果。已知的枢纽辐辏结构与定量分析相关。在一个整合的美国医疗保健组织中应用网络分析,展示了在 SARS Cov2 大流行期间,护理模式的变化和瓶颈的出现,与临床经验一致,提供了一定程度的表面效度。对多种影响的建模可以识别对压力的敏感性,并为加强系统提供机会,因为患者流动是常见且大量的。该技术提供了一种分析系统行为对有意和背景变化的影响的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebc8/9203572/cca2e7248b2f/41598_2022_14261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验