Suppr超能文献

无标度网络很罕见。

Scale-free networks are rare.

机构信息

Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO, 80309, USA.

Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO, 80309, USA.

出版信息

Nat Commun. 2019 Mar 4;10(1):1017. doi: 10.1038/s41467-019-08746-5.

Abstract

Real-world networks are often claimed to be scale free, meaning that the fraction of nodes with degree k follows a power law k, a pattern with broad implications for the structure and dynamics of complex systems. However, the universality of scale-free networks remains controversial. Here, we organize different definitions of scale-free networks and construct a severe test of their empirical prevalence using state-of-the-art statistical tools applied to nearly 1000 social, biological, technological, transportation, and information networks. Across these networks, we find robust evidence that strongly scale-free structure is empirically rare, while for most networks, log-normal distributions fit the data as well or better than power laws. Furthermore, social networks are at best weakly scale free, while a handful of technological and biological networks appear strongly scale free. These findings highlight the structural diversity of real-world networks and the need for new theoretical explanations of these non-scale-free patterns.

摘要

真实世界的网络通常被认为是无标度的,这意味着具有度数 k 的节点的比例遵循幂律 k,这一模式对复杂系统的结构和动态具有广泛的影响。然而,无标度网络的普遍性仍然存在争议。在这里,我们组织了不同的无标度网络定义,并使用最先进的统计工具对近 1000 个社会、生物、技术、交通和信息网络进行了严格的实证检验,以检验它们的普遍存在性。在这些网络中,我们发现有力的证据表明,强无标度结构在经验上是罕见的,而对于大多数网络,对数正态分布与幂律一样或更好地拟合数据。此外,社交网络充其量只是弱无标度的,而少数技术和生物网络则表现出强无标度。这些发现突出了真实世界网络的结构多样性,以及需要对这些非无标度模式进行新的理论解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ff/6399239/fb59d6e93b91/41467_2019_8746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验