Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO, 80309, USA.
Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO, 80309, USA.
Nat Commun. 2019 Mar 4;10(1):1017. doi: 10.1038/s41467-019-08746-5.
Real-world networks are often claimed to be scale free, meaning that the fraction of nodes with degree k follows a power law k, a pattern with broad implications for the structure and dynamics of complex systems. However, the universality of scale-free networks remains controversial. Here, we organize different definitions of scale-free networks and construct a severe test of their empirical prevalence using state-of-the-art statistical tools applied to nearly 1000 social, biological, technological, transportation, and information networks. Across these networks, we find robust evidence that strongly scale-free structure is empirically rare, while for most networks, log-normal distributions fit the data as well or better than power laws. Furthermore, social networks are at best weakly scale free, while a handful of technological and biological networks appear strongly scale free. These findings highlight the structural diversity of real-world networks and the need for new theoretical explanations of these non-scale-free patterns.
真实世界的网络通常被认为是无标度的,这意味着具有度数 k 的节点的比例遵循幂律 k,这一模式对复杂系统的结构和动态具有广泛的影响。然而,无标度网络的普遍性仍然存在争议。在这里,我们组织了不同的无标度网络定义,并使用最先进的统计工具对近 1000 个社会、生物、技术、交通和信息网络进行了严格的实证检验,以检验它们的普遍存在性。在这些网络中,我们发现有力的证据表明,强无标度结构在经验上是罕见的,而对于大多数网络,对数正态分布与幂律一样或更好地拟合数据。此外,社交网络充其量只是弱无标度的,而少数技术和生物网络则表现出强无标度。这些发现突出了真实世界网络的结构多样性,以及需要对这些非无标度模式进行新的理论解释。