Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
Nat Commun. 2024 Jul 31;15(1):6428. doi: 10.1038/s41467-024-49980-w.
Complicated peripheral nerve injuries or defects, especially at branching sites, remain a prominent clinical challenge after the application of different treatment strategies. Current nerve grafts fail to match the expected shape and size for delicate and precise branched nerve repair on a case-by-case basis, and there is a lack of geometrical and microscale regenerative navigation. In this study, we develop a sugar painting-inspired individualized multilevel epi-/peri-/endoneurium-mimetic device (SpinMed) to customize natural cues, featuring a selectively protective outer sheath and an instructive core, to support rapid vascular reconstruction and consequent efficient neurite extension along the defect area. The biomimetic perineurium dictates host-guest crosslinking in which new vessels secrete multimerin 1 binding to the fibroin filler surface as an anchor, contributing to the biological endoneurium that promotes Schwann cell homing and remyelination. SpinMed implantation into rat sciatic nerve defects yields a satisfactory outcome in terms of structural reconstruction, with sensory and locomotive function restoration. We further customize SpinMed grafts based on anatomy and digital imaging, achieving rapid repair of the nerve trunk and branches superior to that achieved by autografts and decellularized grafts in a specific beagle nerve defect model, with reliable biosafety. Overall, this intelligent art-inspired biomimetic design offers a facile way to customize sophisticated high-performance nerve grafts and holds great potential for application in translational regenerative medicine.
复杂的周围神经损伤或缺损,尤其是在分支部位,在应用不同的治疗策略后仍然是一个突出的临床挑战。目前的神经移植物无法根据具体情况匹配精细和精确分支神经修复所需的预期形状和大小,也缺乏几何形状和微观再生导航。在这项研究中,我们开发了一种受糖画启发的个体化多层次的神经外膜/束膜/内膜仿生装置(SpinMed),以定制天然线索,其特征是选择性的保护性外鞘和有指导作用的核心,以支持快速的血管重建,并随后沿着缺损区域有效地促进神经突延伸。仿生神经外膜决定了主体-客体交联,其中新血管分泌多聚蛋白 1 与丝素填充物表面结合作为锚点,有助于形成生物神经内膜,促进施万细胞归巢和髓鞘再生。将 SpinMed 植入大鼠坐骨神经缺损部位,在结构重建方面取得了令人满意的效果,恢复了感觉和运动功能。我们进一步根据解剖结构和数字成像对 SpinMed 移植物进行定制,在特定的比格犬神经缺损模型中实现了神经干和分支的快速修复,优于自体移植物和去细胞移植物,具有可靠的生物安全性。总的来说,这种受智能艺术启发的仿生设计为定制复杂的高性能神经移植物提供了一种简便的方法,在转化再生医学中有很大的应用潜力。