Suppr超能文献

心脏重症监护病房患者的死亡率预测:对现有方法和人工智能增强方法的系统评价

Mortality Prediction in Cardiac Intensive Care Unit Patients: A Systematic Review of Existing and Artificial Intelligence Augmented Approaches.

作者信息

Rafie Nikita, Jentzer Jacob C, Noseworthy Peter A, Kashou Anthony H

机构信息

Department of Medicine, Mayo Clinic, Rochester, MN, United States.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States.

出版信息

Front Artif Intell. 2022 May 31;5:876007. doi: 10.3389/frai.2022.876007. eCollection 2022.

Abstract

The medical complexity and high acuity of patients in the cardiac intensive care unit make for a unique patient population with high morbidity and mortality. While there are many tools for predictions of mortality in other settings, there is a lack of robust mortality prediction tools for cardiac intensive care unit patients. The ongoing advances in artificial intelligence and machine learning also pose a potential asset to the advancement of mortality prediction. Artificial intelligence algorithms have been developed for application of electrocardiogram interpretation with promising accuracy and clinical application. Additionally, artificial intelligence algorithms applied to electrocardiogram interpretation have been developed to predict various variables such as structural heart disease, left ventricular systolic dysfunction, and atrial fibrillation. These variables can be used and applied to new mortality prediction models that are dynamic with the changes in the patient's clinical course and may lead to more accurate and reliable mortality prediction. The application of artificial intelligence to mortality prediction will fill the gaps left by current mortality prediction tools.

摘要

心脏重症监护病房患者的医疗复杂性和高 acuity 导致了一个具有高发病率和死亡率的独特患者群体。虽然在其他环境中有许多用于预测死亡率的工具,但心脏重症监护病房患者缺乏强大的死亡率预测工具。人工智能和机器学习的不断进步也为死亡率预测的发展带来了潜在资产。已经开发出人工智能算法用于心电图解读,具有有前景的准确性和临床应用价值。此外,已开发出应用于心电图解读的人工智能算法来预测各种变量,如结构性心脏病、左心室收缩功能障碍和心房颤动。这些变量可用于新的死亡率预测模型,该模型会随着患者临床病程的变化而动态变化,可能会导致更准确可靠的死亡率预测。人工智能在死亡率预测中的应用将填补当前死亡率预测工具留下的空白。

相似文献

2
Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.
Eur Heart J Acute Cardiovasc Care. 2021 Jun 30;10(5):532-541. doi: 10.1093/ehjacc/zuaa021.
5
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation.
BMC Bioinformatics. 2021 Nov 8;22(Suppl 5):93. doi: 10.1186/s12859-021-04000-2.
6
Multilayer dynamic ensemble model for intensive care unit mortality prediction of neonate patients.
J Biomed Inform. 2022 Nov;135:104216. doi: 10.1016/j.jbi.2022.104216. Epub 2022 Oct 5.
7
Artificial Intelligence-Based Models for Prediction of Mortality in ICU Patients: A Scoping Review.
J Intensive Care Med. 2024 Aug 16:8850666241277134. doi: 10.1177/08850666241277134.
8
A proof-of-concept study on mortality prediction with machine learning algorithms using burn intensive care data.
Scars Burn Heal. 2022 Feb 18;8:20595131211066585. doi: 10.1177/20595131211066585. eCollection 2022 Jan-Dec.
9
The application of deep learning in electrocardiogram: Where we came from and where we should go?
Int J Cardiol. 2021 Aug 15;337:71-78. doi: 10.1016/j.ijcard.2021.05.017. Epub 2021 May 14.

引用本文的文献

1
Machine learning score to predict in-hospital outcomes in patients hospitalized in cardiac intensive care unit.
Eur Heart J Digit Health. 2024 Dec 20;6(2):218-227. doi: 10.1093/ehjdh/ztae098. eCollection 2025 Mar.
3
Key Concepts in Machine Learning and Clinical Applications in the Cardiac Intensive Care Unit.
Curr Cardiol Rep. 2025 Jan 20;27(1):30. doi: 10.1007/s11886-024-02149-9.
5
More Alike Than Not? Predicting Mortality in the Cardiac and Medical Intensive Care Units.
JACC Adv. 2023 Dec 6;3(1):100758. doi: 10.1016/j.jacadv.2023.100758. eCollection 2024 Jan.
6
Cardiac intensive care unit: where we are in 2023.
Front Cardiovasc Med. 2023 Nov 24;10:1201414. doi: 10.3389/fcvm.2023.1201414. eCollection 2023.
7
Integrating a Virtual ICU with Cardiac and Cardiovascular ICUs: Managing the Needs of a Complex and High-Acuity Specialty ICU Cohort.
Methodist Debakey Cardiovasc J. 2023 Aug 1;19(4):4-16. doi: 10.14797/mdcvj.1247. eCollection 2023.

本文引用的文献

1
Are Unselected Risk Scores in the Cardiac Intensive Care Unit Needed?
J Am Heart Assoc. 2021 Nov 2;10(21):e021940. doi: 10.1161/JAHA.121.021940. Epub 2021 Oct 18.
2
The Mayo Cardiac Intensive Care Unit Admission Risk Score is Associated with Medical Resource Utilization During Hospitalization.
Mayo Clin Proc Innov Qual Outcomes. 2021 Sep 2;5(5):839-850. doi: 10.1016/j.mayocpiqo.2020.12.009. eCollection 2021 Oct.
3
Past, present, and future of mortality risk scores in the contemporary cardiac intensive care unit.
Eur Heart J Acute Cardiovasc Care. 2021 Oct 27;10(8):940-946. doi: 10.1093/ehjacc/zuab072.
4
Predicting 1-Year Mortality on Admission Using the Mayo Cardiac Intensive Care Unit Admission Risk Score.
Mayo Clin Proc. 2021 Sep;96(9):2354-2365. doi: 10.1016/j.mayocp.2021.01.031. Epub 2021 Aug 5.
6
Abnormal serum chloride is associated with increased mortality among unselected cardiac intensive care unit patients.
PLoS One. 2021 Apr 26;16(4):e0250292. doi: 10.1371/journal.pone.0250292. eCollection 2021.
7
Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.
Eur Heart J Acute Cardiovasc Care. 2021 Jun 30;10(5):532-541. doi: 10.1093/ehjacc/zuaa021.
8
Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation: A Population-Based Study.
Circ Arrhythm Electrophysiol. 2020 Dec;13(12):e009355. doi: 10.1161/CIRCEP.120.009355. Epub 2020 Nov 13.
10
Association Between Albumin Level and Mortality Among Cardiac Intensive Care Unit Patients.
J Intensive Care Med. 2021 Dec;36(12):1475-1482. doi: 10.1177/0885066620963875. Epub 2020 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验